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Lecture :

① Polytopes and basic properties
② The upper bound conjecture I UBC )

③ Proof of the upper bound theorem l UBT ) for

simple I simplicial polytopes

② PoIytopes@dbasic.pparties
We start with some basic definitions :

→ We work in Rd -

- fling . .

.

, xd ) : x ; E 1123

endowed with the standard topology and the

inner product .

Our protagonists for today will be polytopes .

Definition :

A polytope P is the convex hull of finitely many

points ,
i. e. ,
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I Beg3 - cube octahedron ( =3 - dim 'd cross)polytope
From the pictures we see that every polytope has

faces ( vertices
, edges , . . . ) .

Let's make this formal :

Definition :

• A supporting hyperplane of a polytope PE IDA is an

affine hyperplane H -

- I x END : Ca
,

x ) =b3 such that

all points of P lie on the same side c It .

• A face of P is the intersection . P with any

supporting hyperplane .
( Note that 4 s a face )

• The dimension of a face F of P is the dimension of

its affine hull
. = a

translated linear subspace
"

-
-

= smallest affine subspace
containing F

Examples a face of

a-
/ dim 0 f- vertex )

t I
a face of dim A•--•#aface f- edge )

• a of dim 2
,

i. e
, codimension A f- facet)



Node
: Also 0 and P are regarded as C improper ) faces

.

with the convention dime 0 ) = - A
.

Useful facts
-

• Every face of a polytope is a polytope .

• The set of faces ordered by inclusion is a graded
lattice

. of P

• The set of faces Torderred by reverse inclusion is the

face lattice of a polytope PTC the ( combinatorial )

dual or polar ) of P
.

If we assume that Of Int CP )
,

then we can define P
't

via
p *  

= { ye Rd : C x
, y > Ed for all x EP }
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As an exercise you can verify that for

D= [ -1
,

id = con v

¥4,113
d) the d - dimensional

cube the dual is given by
P

't
=
Convy

te is ) = the d - dimensional cross polytope .

i -

Th unit vector
C O

, . . , 0,1 , ,
. . . ,

O)
T

position

i

^ Y.atYz E A

e. g .

- Yi

£
-

.•/Y - ← Ya - Yz E A
I / I 7

- n A
•

- y
- ⑧

p

Ya
- Yz E A

÷⑧÷÷÷. ⇒i÷÷.

-
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Definition it
- -

-

For a polytope P we call f CPK Cfo CPH CB, .
. .

,

foremen
)

the f - vector of P
,

where fi CP) = # i - dime faces of P
.

Remade
We

defined
,

without proving that this is indeed true
,



p
't

as the ( combinatorial ) dual of P
.

Hence
,

fi l P) = form in .
riff)

.

for O Ei E dim LP) - n
.

Examples
We have f CEO

,
133 ) = ( 8,12 ,

b
,
M and

f KLOMP )
*

) = fl 3 - cross polytope ) = C 6
,

12,8
,
A)

Simplicial Emplepolytopes

• A d - dim
'

l polytope is simplicial if every face is a

simplex .

-

a polytope whose
face lattice is isomorphic
to the one of Cow Cen , . . .

,
er )

* A d- dim
' l polytope is simple if its dual P

't

issimplicial
.

c :

As an exercise one can show that a d-dimHpolytope is

simplicialiffone Call ) of the following equivalent
conditions hold :

(a) every facet of P has d vertices

(b) everyproper face of P is a simplex .

(c) every k - face has htt vertices for k Ed - s
.



Similarly ,
a d- dim '

l polytope is simple iffone tall ) of
the following equivalent conditions holds :

(a) Every vertex of P lies in d facets
.

(b) Every vertex of P lies in d edges
6) Every k - face of P lies in d- k facets for bro

.

We will use the following easy

Facts

If P is simple ,
then so is every face of P

.

② The Upper Bound Conjecture
-

Our protagonists in this part are a family offascinatingpolytopes which we now define
.

Definition
-

-

:

(a) The curve d ltId) : t EIR I is called
= : qft)

moment curve in Rd
.

(b) given any n distinct real numbers tie .
.

. et n
the

polytope Cl din ) = cow ( q Its
, . . .

, qltn ) ) is called

a cyclic polytope .

Here are some properties ofEld,
n ) that we will not prove

in the lecture but that we will consider in the exercises
.



Properties
① dim Ud

,
n ) =D l since any dth points on the moment curve

are seen to be linearly independent using the Vanderwoude

determinant ) and Ccd
,

n ) is simplicial .

② Ccd, n) is LET -

neighborly ,
i. e. , every collection of

c- LE ) vertices is a face of Ccd
,

n )
.

in

particular
,

fu
- n

l Ca Cny= (2) for all k E LET

③ The face lattice of Ccd
,

n ) is independent of the

chosen
points .

So
,

we speak about the cyclic polytope .

④ Gale evenness condition
-

-

:

A d - tuple Va -

- { of L 't it ,
.

. . , qttidl 3 determines a

facet F  
= corn I Va) of Calm ) iff for every 2 points

of Cti )
, of Hj ) E Viva ( icj )

Wd n to Hit if It , .
.

.

, qltj 131 is even
.

We can now formulate the Upper Bound Conjecture ;

which is due to Nothin C 19571
.

Let P be a d- dime I simplicial ) polytope with

fo ( P ) = n
.

Then :

f ; C p ) E f ; C

Cl
din ))

for all 1 Ei E d - A
.

The UBC has been shown for :

Da all polytopes ( McMullen
,

1970 )



D. all triangulations of Cd - N - dim ' l spheres (Stanley ,
1975)

( We will prove this tomorrow
. )

• all triangulations of odd - Aim ' l dosed manifolds
as well as all even - dim 'd manifolds of Euler

characteristic2 ( Novik , 1998 )

Today we will prove the UBC for polytopes .

Since

by twoprocedures ,
called pulling and pushing ofvertices

, any d - polytope can be converted into a simplicial

polytope with the same number of vertices and at

least as many j - faces, Cr Ejed - A , we can restrict

our attention to simplicial polytopes .

We prove a dual form :

C Cd
,

n ) simplicial ← C Cd
, NT simple

fo C Ccd
,

n )) = a I fail ad
,

= n

Theorem &McMullen
, 1570 )

-

Let P be a id - dim
'

l simple polytope with n facets
.

Then : fi CP) E fi ( C Cd
,
NJ ) for all OE i ed - A

.



③ Theof IftheUBT

Let Pend be a d- dim '

l simple polytope
Let l : Rd → IR a linear functional ,

that is injective on

the vertex set of P
.

Orienteachedge I v
,

w } in the direction ofincreasingvalue of l
.

Definition-

:

We set HELP ) = # of vertices of in degree k

and help ) -

- Chor
,

hi , . . .

,hid)

O T As P is simple
Example :

&
each vertex has degree

-

I

e rod,soond
.

maximize boatin direction I 2 he ( 3- cube ) = ( 1,3, 3
,

t )
e *I I

A
a

✓ 2
*VJBL

2

3

theorem

Let P be a simple d- polytope and l a linearfunctional
as above

.

Then :

Eof.

CR xk = If hi CP ) C xtrli

In particular , hi LD -

- ¥! - N
" i

(7) fulp )



and help ) = : help) does not depend on l
.

The proof of this theorem uses the following lemma :

Lemma :
-

Let P be a simple d- polytope and let l : Rd -2 112 be a

a linear functional as before
.

Let ve P be a vertex that

is a local maximum C i.e.
,

l Cv) all u ) for all edges
du

,
v 's EP )

,

then v is a global maximum .

lie
. ,

l Cvl all u ) for all vertices u E P )
.

We will prove both
,

the lemma and the theorem ,
in

the exercises
.

As a consequence of the theorem we obtain
.

Corollary
Let P be a simple d- polytope .

Then :

(a) hi CR z O for all Of i ed
.

.

(b) hi CP) = hai CP) for all O Ei E d
.

( Dehn - Sommerville equations )
Proof :

-

Ca ) is clear from the definition of h ; CP )
.

(b) h ; CP ) = hi CD = # C vertices of indegree i w.r.tl )

= # C vertices of in degree d- i w
.

r
.

t
.

- l )
= hit

' ; CP ) = hot i LD Be



Observation

fu CB = If Lindh ; Cp)
To

-

70

In particular , bounds for the h - numbers imply bounds for
U

the f- numbers
.

The UBT hence follows from the following

stronger result
.

theorem

If P is a simple d- polytope with n facets ,
then

CH hi CP ) E hi C Ccd
, nt ) for all OE i Ed

.

Due to the Dehn - Sommerville equations it suffices

to show ht ) for iz TEI
.

To do so ,
in the exercises we will compute hit Ccd

,
NIT

Lemma

hi:c Ccd ,nT I -

- ha ; lad
,
nfl = (

" dt

if) for all is LET

The previous theorem ( and hence the U BT ) needs the

following two lemmas
.

Lemma A :

Tetpbe a simple d- polytope and I a facet of P
.

Then : hi ( P ) > hi
. a (F) for all 1 Ei ed - I

.



Lennie

Let P be a simple d- polytope .

Then, for all OE is d- A

÷¥g,

hi CF ) = C its ) him LP) t Cd - i ) hi C P)
.

We leave the proofs of Lemmas 1 and 2 as an

exerciseand instead show how to use them to show txt
.

Proofof:
.

We have seen that it suffices to show

HA ha .
i CR s (

n - dti

? ) for all i E LET
.

We prove htt I by induction on i
.

B
: ha CP) = fd C p) =p = (

n - d t

Oo
- 1 ) ✓

Do i= hots C p) = for , ( p) - d = (
n - d t ) ✓

• Inductions i → its

We have :

¢
Lemma a

n - hd - i CPD ④
Efaw

.

hd-i-nlT
Lemma 2 E ha

- i ( P )
→

⑦Cd - i )ha.id P) t ( it Dh'd . inKP )
.

⇒ C n - d ti ) ha
. i CP) 7 l ith ha . i - a

CP)

⇒ ha . i - i
CP ) E mifhti ha - i CP)

a'jnpdoufaeisoins (n-dt.fi/--(n-idIi/rg



1¥ :

① Simplicial complexes and

Stanley
- Reisner

rings② The Upper Bound Theorem for Cohen - Macaulaycomplexes( Stanley 's proof ) and spheres

① Simplicial complexes and

Stanley
- Reisner rings

Our protagonists for today will be simplicial spheres

and Cohen - Macaulay complexes .

In order to define these , we first need to introduce

some basic notions
.

Definition :

*

An
labs tract ) simplicial complex on vertex saris a collection

of subsets of V that is closed under inclusion ie
,

F- E D
,

GE F  ⇒ GED
.

⑨ Elements of D are called faces .

D. For a face FED
,

dim F : = IF I - t is the dimension

of F and dim D= may I dim F  

: F E D ) is

the dimension of D
.

Ex#e :

① O - dimensional simplicial complexes are disjoint
^ 2 n

unions of ni
, points

"

.

• • -
- - •



② A - dimensional simplicial complexes are just graphs :

•4
• 3

• 7

= { of ,
LAY

,
{ 23

,
.

.  . ,
EH 'D= • •

^ s T.diE-erh.usY• •

2 6 { 1,23
, 1433,1443, 1453,1563

,

{6,73
, 15,733

.

-

r - drink faces
0 is always a face if Dt 01 = edges

C of dim - s )

We often omit parentheses and write 123 instead of 11,433
.

③

3•
•

s

•
6 D= I of,

1,2 , . .  . 16
,

- -q dine -

y dim -

- O

• • y 12113,14 , 15,23 , 24,2556,

2 -
dim -_ I

123,1453
dim D= 2 -

dim - -2

5

④

9D=

.

3 -

- boundary of the octahedron
I I •

!
= { 0,1 , .

.
.

,
6

, 12,14 , 15,16 , 23,25 ,
26

,

"
•

34,35
, 36,45 ,

46
,

125
, 126,145 ,

6

dim D= 2 146,235,236,345,3463

More

generally,
to any boundary of a simplicial polytope

C of . yesterday 's lecture ) we can associate a simplicial complex .



As for polytopes , for a Id - t ) - dimensional simplicial complex

D we define its f vector fl D) = I f - ,
ID

, fo (D)
, . . .

,
fat CD) I via

fi CD) = # of i - Aim 'd faces of D
,

-1 e is d - A
.

In part ②
,

③ resp . ④ of the previous example ,
we have

fl D) = ( a
,

7
, 7) ,

f (D) = C A
,

6
, 8,2 ) resp . fl D= H

, 6,12 ,
8)

.

In the examples , we have already visualized a

simplicialcomplex geometrically .

More generally ,
this works

in the following manner :

givena simplicial complex D on vertex set V -

- En ] 11,2, . . . if

we consider R
"

together with its standard basis

en
-

- to:o) ,
. .

. , en
-

- fig) .

For F E D define HFH = cow I e i : it F )
.

-

is a CFI-N - dim
' l simplex

C in the sense from yesterday )

We set HD ¥,jFH and call this

the
geometric

realization of D
. n

Ez

aExample :

D= { 0
,

A
, 2,3 ,

12
,

13 )
,

H DH = • >• 9

ez

R :

L

Dm HDR is a topological space with topology induced from 112
"

.

* The above construction shows that any simplicial complex



on n vertices can be embedded in 112
"

.

In fact , by choosing n

distinct points on the Kdth - dim '

lMOXIE any
d- dim

'
l simplicial complex is embeddable Ccf . yesterday 's lecture )

in 1122dm I but not Rd .

. e. g. , Ks is only embeddable in R
" "

but not I
"

)
.

We can finally define our first protagonist for today :

Definition :

A simplicial sphere is a simplicial complex D such that

HDH is homeomorphic to a sphere .

Example I Comments :
-

Em Any boundary of a simplicial polytope is a simplicial

sphere .

Dm For d- A E 2

we
have

{ Id - D - dim
'
l simplicial spheres 3 = Hoth . dim

'

l poly topal spheres}
-

realizable as bound a-

' B For d - 173
,

most simplicial spheres
ry of a simplicial polytope

are not poly topal .

( d- A =3
,

Pfeifle I Ziegler , 2004 i d- 134
,

Kalai
, 1988 )

Tod¥d .
Prove the UBT for simplicial spheres ,

i. e. ,

fi CD) E fi C Elden) ) for any lot- A - dim
'
l simplicial

the d- dime cyclic
polytope on n vertices sphere D on n vertices

.



For the proof we need to enlarge our toolbox
.

An extremely

useful tool in the study of face numbers is the Stanley - Reisner

ring .

Definition
-

:

Let IK be a field and D be a simplicial complex on vertex set

[ n ) . The Stanley - Reisner ideal Is of D is

Iq
= ( XF

'

-

= It
,

Xi : FED > E S :tk[xn,...,xnI_

.is#Wmwmdiroolynomial

ring in n

variables over K

Kill SII
,

is called Stanley - Reisner ring or face ring .

Examples
-

:

① If D= Ed '
is a lot - A) - dim 't simplex ,

then

S -

- Ik Exa
, .

.
. , xd ]

,
I D= ( 07 and IKE DJ = S

.

② If D= { F E EDT )is the boundary of a ( d - D -

dim '

l simplex ,
then S=kExn . . .

,
xd ]

, Is = L xn -
- - - xd > and

IKE DI = Sky .
.  . Xa ? -

•
③ If D=

, q•z=boundary of octahedron
,

then

• •

, f- IKE xn , .

.  -

,
X

,
]

, Ig = Qnx 31×2×41
!
• ¥676

Note Also { 42,33 is trota face but we automatically
have Xnxzxz EID since Xnxz E Is .

As generators for Is it suffices to take the ones

correspondingto C inclusion wise ) minimal non - faces
.



Question Why do we care for IKE DJ ?

Answer : we will see that many combinatorial and

topological invariants of D are encoded
'

in

terms of algebraic invariants of IKEA and vice

versa
.

To make this more precise we need some notions from commutative algebra .

Definition
A finitely generated,

standard
, graded Ik - algebra is an

algebra D= ④ Ri such that :

it IN

* Do I IK

⑥ Ri is a Ik - vector space

graded > ⑧Ri - Rj E Ritj

standard ,⑤R is generated by Rn I as an algebra )finitely
→

⑨
dim ik Rn L A

.

generated
It is straiglh forward to show that in this caseduring#Ri ca for all i and Ri Rj  = Ritj .

Example

HELD ] with the grading induced by the usual degree.

IKE DJ i = f f E KID ] homogeneous of degree i 3
.

Definition :
-

B Ior a finitely generated,
standard

, graded IK - algebra D= ,¥n Ri

we set ' Heli) : = dim
* R for ie IN and call

this the Hilbert function of R
.

a



Be

Er
It ) = Heli ) .

ti
is called Hilbert series

of R
.

In the exercises
,

we will show the following :

They :

Let D be a Ld - A - dim
'

l simplicial complex .

Then I ,⇐fi . acid . u - Hd "

F
Dy

( t ) =  

Ftd
.

As the numerator is a polynomial in t of degree Et
,

we can write it as Ii hi CD ) ti
.

Definition
-

:

h (D) = ( hold , .
. .

,
ha CD) ) is called h - vector of D

.

It is a good exercise to show the following explicit formulas :

.

. 7

hi CD ) = ¥3 tht I diIf)
'

f ; . , (D) ,
o sie d

fi . i LD ) = ( diIt ) hj CD )
,

O Ei Ed
.

I v

Exempt

① h I d - simplex ) = 11,0 , . . . ,
O )

② h I boundary of d- simplex ) = C A
, . . .

,
A )

③ ht I = ( A
, 3,3

,
n )

④ ht 1=143
, a

,
- N

-

lion



~

Remarksi

Da If D is the boundary of a simplicial polytope P
,

we recover the h - vector of the dual P
't

as we

defined it yesterday , i. e.
,

h (D) = h£¥
.

yesterday 's definition
• While we have f CD ) > O C component wise ) ,

h CD ) might
have negative entries

. Lcf
.

Example ④ )
.

* In the exercises you will see a neat way of how to

compute the h - vector
,

known as Stanley 's trick
.

D- As the f - numbers are nonnegative

combinations of the h - numbers
,

inorder to show

bounds for f- CD) it suffices to show bounds for had
.

For the UBT for simplicial spheres D
, we will hence

show hi ( D ) E hi C Ccd
,

n ) )
.

Indeed
,

as the Dehn - Sommerville equations Chic D) =

hoti CD ) ) hold for simplicial spheres and not

only boundaries of simplicial polytopes ,
it . suffices

to show the following statement :

Upper Bound Theorem :
-

Let D be a Ld - N . dim 't simplicial sphere with

folder
.

Then
' hi (D) Eh ; Cold ,

n ) ) = Y
- d t if

'
)

for O e i E LEI
.



② The U BT for Cohen - Macaulay complexes
We will derive the UBT for spheres from the following

statement
.

we will explain this

Theorem :
notion in what follows .

- -

Let Ik be an infinite field and D be a Cohen . Macaulaycomplexover Ik of dimension d- A with n vertices
.

Then :

- ⇒

hi CD) E (
n - dti

) for Oei ed
. (B)-

-

We need to review some commutative

algebra
.

In the

following .lk will always be an infinite

field
.

Animportantstatement is the following :

NoetherNormalizationlemma.CN#NL

:

Let A be a finitely generated,
standard graded IF - algebra .

Then

there exist yrs .
. .

, yr E A
,

such that

•
ya , . . . , yrarealgebraicallyindependent

over K fly . , .
.

. , yr ) to for every

polynomial It KEY , .
.

.

,
xD

.

intuitively ,
a big there exist homogeneous yes .  . . i Us Sit

.part of A

behaves line a

A  =

q ; IKEy , , .
.

. , yr T.li
.

e. A is a finitelyThirumalai't '¥wi in
.

denies between genera
different MiB

.

Definition : In the previous setting ,
r is called Krull

dimension of A , denoted dim A
.



There are several other ways to define the Krull dimension
.

Some are stated in the next theorem
.

Theorem :
-

dim A  = Max # of algebraically independent elements of A

= the order to which -1=1 is a pole of Fact )
.

As an immediate consequence of the secondcharacterization
we obtain dim KED ] = dim Dth if D is

a simplicial complex.

Definition
Lemme

Elements ya , .
. . , yr as in the NNL are called linear

system of parameters C l
.

S
.

o
. p.

)
. Equivalently ,

im

dim A  = r
,

then dim ikAllyn, . . . , yr
) < D

.

EQ : o/\o
,

One can check that xn , xz is

• KUNG
. ,×z , I

lk-lxzztn.FI/hfI
an l . S

.
O . p .

but xitxz , xztxg

• KED ? xz , #xp-

- Spann

alum
's

.

( for IKE DI = KEY , Xz , xD Kx
, xp)

In theexercises
,

we will see an easy
to check criterion if

ya , .
.

. , yd is an l
.

s
. op . for IKEDT

.

( kind - Kleinschmidt )
.

There ex
. ya , . . .

, ness .

t
. every at A can

Definition : be uniquely written as a -

-Egg . . . iyr )BAis called Cohen - Macaulay CCM ) if A is a

freemodule over IKE ya , . .

.

,

¥
r

] for some C
every ) l

.
s

. op . yn . . . ,yr

D is Cohen - Macaulay over 1K
,

if IKE AT is CM
.



Exempt
① ;;

IKE DI = Ktxa ,xz]k*
, >

,
dim KED ] -

- l

B
xntxz is an lp.

since KED ] k×p×j=span #
It

, xD

• IKE DJ is free over k[ x at xD since
t

ask - vector space

xp = x
,

lxntxzl
"

and xp =L. lxi-xdP-xdx.tw
"

w
w

= Nn =Nz
=

Np

uniquely .

We call such an l
.

s
. op . regular .

In particular ,
D is CM

.②
② Io-•g•2 Show that D is not CM

.

( xntxz , Xz ) is an l
. s

.

O
. p .

but not regular.

Question Why are CM algebras important ?

As an exercise one can show :

Theorem
-

:

Let A be a finitely generated standard
, graded algebra

Ik - algebra with
.

d. s
. op . ya , . . . , yr

.

Then :

A is CM ⇐ Fact ) = FHbni.ir#
I i - t )

r

Note If A is CM
, Fang

, .
.

.

, yr ,
It ) is independent of y , , .

. . ,yr .

As a first application to simplicial complexes we get :

⇐y :

If D is CM over some IK
,

then hi (D) 30 for all i
.



Proofi Let dim D= d - A and ya , .  - -1yd an d. S
. op . for KUD

.

Set KID ) REDI

,Kyn
, . . . , ya ) Then

Fires,
It )=

F7f
= Ex elimir.lk (D) it

't

-

11

¥5 hi (D) ti
.

Hence hi CD ) = dim # KID ) i30
.

Ftd ⑤

Eixample h ( or : ) = 4,1 ,
- A ) .

So of . is not CM
.

We can now prove (A)
. CM of dim .=d with

Proof : I fo CD ) -

- n
-

Let ya , . . .

, yd be an d. S
. op . for IKEA )

.

Choose you , .
. ,yn

such that ya ,
. .  . 1yd , yah , . .  . syn is a Ik - basis for

IKE xn , . . , Xu ]
.

The quotient IKE DIKya, .
.

. , y d) is then

generatedas an Ik - algebra by you , .  
- - I yn .

Hence
,

hi CA = dim ik I

KEDHKyni.ggd)i

E # monomials of degree i in
n - d variables Cydia ,

- - .

, yn )
= ( n - dti -

in )
Daa

Notes If D is CM and satisfies the Dehn -

Sommerville relations
,

then we get
hi (D) Eh ; C Ccd , n ) ) for all i

.



The U BT for spheres finally follows from the

following characterization of CM complexes .

Theorem ( Reisner
,

1976 )
#

A Cd - M - dim ' l simplicial complex is CM over

IK if and only if

Ttillkilf ) ; IK ) = O for all FED and - A Eic d- IFI - r
-

p

= dim 1kg CF) ,

where 1kg (F) = { At

A
I GAF  

= 0 ,
Gu FED 3

.

*$499
,

.FI#iFkdHE-xampe:IfHIil!kd0filk

)\•←• =D

to for ie dim D
,

then D is not CM

e.
g. , 9

.

.

Corollary
-

:

All simplicial spheres and balls are CM over 1k
.

As simplicial spheres satisfy the Dehn - Sommerville

relations we finally get the UBT for spheres IStanley,
1875 )

The ABT for spheres .

-
.

Let D be a Cd - N - dim ' l simplicial sphere with n vertices
.

Then hi (D) E hi Cad
,

n ) ) for all i
.

In particular , fi (D) E fi C Ccd
,

n ) ) for all i
.



Lectures

① The Kruskal - Katona Theorem : which integer sequences

are f- vectors of simplicial complexes ?

② Macaulay,
'

Theorem : Which integer sequences are f-
vectors

of multi complexes resp .

h - Vectors of Cohen -

Macaulay complexes ?

③ The g
- theorem and the Generalized Lower Bound Theorem

C GLBT ) : Which integer sequences are h - vectors ofsimplicial
polytopes ? What are lower bounds for such

h - vectors ?

① The Kruskal - Katona Theorem

Our goal is to decide if an integer vector

f  = It
, fo , .

.

. , fan ) E Zd "

is the f - vector of a Cd - D -

dim ' l simplicial complex .

For this we need the

followinglemma
.

Lemma
-

:

given positive integers m and k
,

there exists a unique

expression of m in the following form :

k . binomial

m
-

- late ) t la ; a) t  . . . t ( Asg ) representationof m

with Au > Ak . n
7

.
. .

7 As Z S Z A .

The proof is a double induction on m and k
.

We leave it

as an exercise
.



:
.

.

we define
* cm , = !

,

tahiti far: t
.

.  . tf 's
if Mt O

O if m -

- O
.

Examples 2,121 ) = (G) t 142 ) t 131 t (f) = og

720 76 Iz In

Au answer to a question is provided by the next theorem
.

theorem :( Schaben berger,
Kaushal - Katona )

late ' 50 s early
'

605

For a vector f  =

It
, fo, fr , .

. .

,
IE Eh "

the following are equivalent
.

(a) f is the f - vector of some Id - A - dins 't simplicial complex
. .

(b) 2hm ( fu ) E fun for all KZA
.

fs
It

Exempt If a simplicial complex has 21 3- faces it

has at least 2*9=24kn ) 2- faced ,
at least fix 2,129 )

f-  z

= I8-a) t 142
. a) t IEs ) = 22 edges and at least

fo 3 22 C 22 ) = I I
.

a) t II . a ) = 8 vertices
.

Moreover

U
, 8,22 , 29,217 is the f- vector of a 3- dim ' lsimplicial

complex
.

The proof of (b) ⇒ (a) is by a direct construction
.

For this we need several definitions
.



B. For a family I of k - subsets of Zzo we set

IF  
= { G E Zzo : IGI = be - l

,
G E F for some FEE }

tote
D is a simp . complex

revlex - order on k - subsets of Zzo :
⇐ Hi - faces be H- H- faces's

Zi : ai a bi
A-ha

,
a

.
.

. carb serialbad - - .

a but = B ⇐
and aj

 = bjtjoi .

Da Ju = collection ofK - subsets of Zeo ordered by revlex

= { Go Crevlex Se¥s Crevier.
.Crewe x

C Gm L revie x .  - - }

E : k =3
, c =L remex l in the following )

JE { 012 C 013 C 023 a 123 C 014 C 024 L 124<034

< 134 C 234 L
.

.
. J

For the proof of (b) ⇒ (a) we need two lemmas
,

whose

proofs we defer to the exercises
.

I Here
,

Lemma 1 is needed
to prove Lemma 2)

Lemma A :
-

Let Gm = { arc .
.

.

car
.

}
.

Then
k

°

m = (F) t La : t .  . it (9) ,
where

( aii ) if i > ai .

Example : { 2,3 ,
43 is the (5) t (3) t (3) = 4+3+2=9 th

element of Js
.

Lemma 2 : = initial segment of Ju

-
Tf F  = hbo <3

,

C
.

. .

C 3
in

} E Jk consists of the first

m elements of Ju
,

then 12ft = 2k ( m )
.

Moreover
,

IF is an initial segment of Jr - i
.



We can now proceed with the proof of (b) ⇒ Ca ) :

Given

611
, fo , . . . , fad E Zdzot

'

with
2in I fi ) E fi - a we

construct a simplicial complex D
.

as follows :

Set D;  = first fitelements of Ji
.

and D=
. ! Div { OB

.

As Sita I fi ) E fi
. a ,

Lemma 2 implies 2Dim E Di for i 70
.

Hence
,

D is a simplicial complex
.

⑤

Remark :
-

Simplicial complexes constructed in the previous proof are

called compressed . They belong to the more general class

of shifted simplicial complexes .
Those have a simple

-

If ie FED and Aejci , combinatorial structure which allows
then Fvibuljb ED

to study alg .

+ topological properties

of those complexes
.

more easily . Operations as algebraic shifting

( Kalai
, 1983 ) and combinatorial shifting C Erdos - Ko - Rado)

associate
a shifted simplicial complex to any simplicial complex

Tom binational
while preserving certain propertiess,Bsbers ,

Cohen - Macaulay ness , .

. . )
-

algebraic

We only sketch the main ideas of the proof of (a) ⇒ (b)
.

We follow

Frankl 's proof 11984 ) via combinatorial shifting .

• If A  = ¥oAk for An E Jk , we set

D A  = Um.o2Au .



Lemme

Let A be a collection of subsets of 10,1, .
. . ,n3 .

For Ocjcn

and A E A set

should bethought ) = {
( At&t ) u 103 it jet ,

O # Aa,lA¥jbftold

of a shift operator
replacing j by 0 A otherwise

.

Let Sjl A) =L Sj LA) : AE Ab
.

Then 2 Sj CA) E Sj lat )
.

Note : If A is a simplicial complex ,
then so is Sj CA )

by Lemmas and fl A) = f C Sj CA) )
.

The very rough idea of the proof of (a) ⇒ I b) is the

following: Let D= if% i u 103 be a simplicial complex on vertex

set ENT
,

where Di  = i - dim
' l faces

④ Apply repeatedly shift operators Sj to D It Ej en )
.

Since each step increases the number of facescontainingO
, after finitely many steps , we get a simplicial

complex D
't

that is stable under Sj

,
i. e. , Sj Is 't

) =D
't

for all A Ej En and f CD
't

) = f (D) .

Show that

fee ,
( D

't ) = I Die . ,
I 3 LODE 172*1 DIT = Jette CDT

.



② Macaulaylstheoaem : Which integer sequences are f-

vectors of multi complexes resp .

oh - Vectors of Cohen - Macaulay

complexes ?

¥5 :

* A multi complex on xp .

.
. , xn is a collection M of

monomialsin his . .
.

, xn such that :

lil µ
EM and 61 µ ⇒ ? E M

Cii ) x ; e M for all A Ei En
.

• For a multi complex M we set

Film ) = ILMEN : deg but = i3

and call F I M ) = C Folch )
, Fidel

, .
.

.

) the F - vector of M
.

Examples :

-

① Any simplicial complex can be thought of as

C square free) multi complex

"

by associating to a face

{ in c
.

. .
cicely E D the monomial Xin . .  - Xin .

In this case : ffs ) = Fitr CD )
.

② A- ft ,
x

,
Ed

, . .

. 3 is an infinite multi complex on x
,

with FCM ) = Ct
,

A
, . . . ,

A )
.

③ Let IE IKE xp .
. . , in ] be a monomial ideal and

BI -

- set of monomials in 1k¥ . . . ,
xD not

contained in I

Then BI is a multi complex .
In fact :



I is a monomial ideal ⇐ BI is a multi complex .

In this cane Fi CBI ) = dim
ik Hexis .

. .

, xD II ) ;

Questions What can we say about F - vectors of
multi complexes ?

Before we can give an answer to this question we need

one more definition .

For
.

m -

- tank ) t ( Eat ) t .
.  . t ( as) with

Ak > Qu- is.
.

.

> as 7571 , we define

m
' "

= faith ) t fifth ) +
. .  

tasty
) and O

' "
-

- O
.

theorem (Macaulay,
19271

F  = ( Fo , Fn Ez , . . . ) E 25,0 is the F - vector of a

multi complex if and only if to -

- A and OE Fi tf Fili'
'

fist
.

The proof is very similar to the one by Kruskal - Katona
.

and uses an explicit construction
.

For F  

= Eo
, F , . . .

)

one defines Ti (F) = first I monomials in remex

and TCF ) =¥oTi CF) .

order degree i

y

-One then shows that the following x ??
 - . xuan Erevuxx.hr . .

xbn "

⇐ Fs : as Cbs andconditions are equivalent : aEbttt€
Ii ) F is F - vector of a multi complex

Cii ) Tf is a multi complex
Ciii ) Fo -

- A and OE Fits Eff "
fix

.



Questions Why are multi complexes important ?

We have seen in Example ③ that F- vectors of multi -

complexes BI are Hilbert functions of quotients of

monomial ideals
.

More generally,
in the exercises we will

Show that given any homogeneous ideal I E KEY , .
. .

,
Xu ]

,

there exists a monomial Ik - basis BI of KEY , . . .

,
xD

and BI is a multi complex .

It follows from

Example

③

that BI is the set of monomials not lying in the

monomial

ideal J and

dim
ik lKiki , .

. .

, xn VI ) i
 = Fi

CBII-zdimkllk.hn

. . . ,xn% ) i .

This together with Macaulay 's theorem implies :

TIM :

Let F  
= I Fo

, Ty , . . .

) E 2%
.

The following are equivalent :

(a) F is the F - vector of a multi complex
.

(b) Fo = n
,

O E I it .
E F ! "

t is
, A

(c) I is the Hilbert function of some finitely generated,standard
, graded algebra KEY , . . . ,WD.

We have seen in the second lecture that if D is a Cd - i ) -

dim '
l Cohen - Macaulay complex with l . s

.
o

. p . yes . . . , yd ,
then

hi CDI = di Mik ( KUD Kya
, . . . , yds

) i i

So
,

the previous theorem implies that HUD satisfies condition

(c) if D is Cohen - Macaulay . Indeed , Stanley showed the



following complete characterization of h - vectors of CM complexes
.

Theoremcstanley-i.AE#
Let h -

- Cho
, ha , .

. .

, h d) E Edt ! The following are equivalent :

(a) h is the h - vector of a.shelled complex

(b) h is the h - vector of a
E You have seen this

notion in the exercises
.

Cohen - Macaulay complex . c- Such h is called M -

sequence

(c) her and OE hit
,

Ehf "
for all i 30

.

③ The g
- theorem and the Generalized Lower Bound Theorem

W

Questions : (a) Is there a complete characterization of

h - vectors of simplicial polytopes?

(b) What are lower bounds for face numbersToafrtgsicmplicial
polytopes ?

The answer to Cal is given by the following theorem
.

necessity sufficiency
- g

- theorem C Stanley ,

- Bill era - Lee i

1980
, conjectured by

"

McFall
en )

- -

Let h -

- Cho
, ha , .

.
.

, h d) E 2%4
.

The following are equivalent :

( at There exists a simplicial d- dim
'
l polytope P such that he had

.

(b) . hi  
= hd . i fi Dehn - Sommerville relations I 4- . lecture 1

• tho Eh
,

E
 

.
. .

E h LE ,
← Generalized Lower Bound Theorem

• ( hoihihos . .

.

,
h Lay

- hey, . a
) is an M - sequence .

Eso Isn TEs
Note By the Dehn - Sommerville relations hos

. .
.

,
h LES

determine f CD ) for D= boundary of d- dim '
l simpI

.

polytope



sketchoftheproof-softheneces.si/ypart- :

Step Assume that the vertices of Phare rational coordinates
.

( This can be achieved by slightly perturbing the vertices
.

)

Let Cpin , . .
.

, pid ) be the coordinates of vertex i
.

Step Set Oi  

= pix ,
t pzixz t

.
.

.

t pm. * n for ki Ed

It follows from the kind - Kleinschmidt criterion we have seen

in the exercises that On
, . . . ,

Ed
is an l

.

s
.

o
. p .

forTR
' PI

.

Note
that

and hence hi Dr P) = dim R
R COPTho

, , . . . , od )
OP is CM

.

Step :

Fact C Dani loot it978 )

RE OPT Kon . .
. , od ) is isomorphic to the singular cohomology

ring of the toric variety Xp corresponding to P
.

As Xp is known to satisfy the Hard Lefschetz Theorem it

fellows that for w =

in t
. . .

t Xu the followingmultiplication
maps are injective :

x w : I RE 2B ko
, , .

. . ,
odd i

 → (R Bka
, . .

. ,

odd its

for O E is LET - A
.

In particular ,

hi GP ) E hit a
GP ) for o E i E LE) - n

) i
- hi GR - hi -

tap)
Moreover

, dim ,R HRTJP )Ko
, ,

. . .

, Odio )
=

gi or P )
i

which implies that I gold Bi - - -

s GLEICH))
fan , . . . , xD

is the Hilbert function of RHP #o
, , . . . ,od

,
w > + width )

and thus

an M
.

- sequence .
TB



The sufficiency part of the g
- theorem was shown by a direct

construction .

Remarking

Do The g
- theorem has been conjectured to be true for simplicial

spheres for a long time
. This is known as the g- conjecture .

• In the last 6 months there appeared 3 preprint s announcing

proofs in general ( A dip rasito
,

1212018 )
,

for PL - spheres

( Karu
, 512019and Adiprasi to - Steinmeyer,

0612019 )

The answer to question C b ) is known as the Generalized

Lower Bound Theorem which we now state including the

equality case I
Murai - Nero

,
2013 i conjectured by McMullen I Walk up

1871 )Generalizedlowerlooundtheooemlet
P be a d- dim '

l simplicial polytope .
Then

ho Cop ) E his cap ) E
. . .

Eh
Lazy

top )
.

Moreover
,

hi
- a

cop ) = h ; Cap ) for some Okie Ed if and only if P is

Ci - a) - stacked
.

-

i. e.
,

there ex
.

a triangulation
of P without new faxes ofdimensionE d - i

I



Lecture

① Basic properties of balanced simplicial complexes

② Balanced Cohen - Macaulay

complexes
③ The balanced generalized lower bound theorem

Basic properties of balanced simplicial complexes

We start with the definition of our protagonist for

today
.

: ( this def . goes back to Stanley ;he assumed that Dis pure
)

A Cd - t ) - dim '

l simplicial complex D is called balanced if

the graph of D is d- adorable , i. e. , there exists a

map K : VCD ) → Ed ] such that Kci ) * klj ) for all fiijh ED
.

Note Since the graph of a Cd - D - simplex is a complete graph

on d vertices
,

we cannot color a Cd - A - dim
'
l simplicial

complex with less than d colors
.

E , tag
= chains pnc .

.
. Cpu with pi Ep

① The order complex Cp ) of a graded poset P of rank d

is a Cd - H - dim
' l balanced simplicial complex, where the Colo -

abc c ring is by

•• ••
flee

ac = = •
be

rank
D= ab••••ac••be → O I P )•• •

-

rOBA Abc
-

-••⑧•sea BON•• I
-••

a b C a ab b

e. g. , barycentric subdivision



② C.ro#lybpeg:Ca*=conv { ten , .
. . g ted )

A coloring of the boundary complex JCI is given by
K :{ ten , .

.
. , ted } → Ed ] : I ein > i

.

q••i÷•÷•to

③ Connected sums of balanced complexes :
-

D
,

T Cd - t ) - dim
'

l balanced simplicial complexes ,
FED

,

GE D facets with 4 : F  → G
. bijection that is color - preserving

balanced
The balanced connected sum D # T is

thesimplicial
complexobtained

by identifying vertices of Fong land all faces on those vertices)

according to I and removing the facet F f- G)
.

e. g. ,
stacked cross - polyhoped spheres = balanced connected sums

of a Coit
.

• F
G

• •
Nok : the face

6 b numbers

•i'.

 

.

- • # •"÷.

- • =

.9 aorgaionwdepweensdenata

• • • • but there are

differentcombinatorial
types

For balanced simplicial complexes it is common to study the

following refinement of the f- and the h - vector
.

Definition

For a Cd - A ) - dim ' l balanced simplicial complex A with coloring

k we set as (D) = # I FED : K (F) = S3 for SEED ]
= # of faces colored with S

and call ( as (D) ) seeds the flag f-  vector of D
.



Moreover
, we set Bs (D) =

ZED
's "

!

at (D) for SE Ed ] and
TES

( Bs CD ) )
seedy

is called flag h - vector
.

Note is as (D) = Is pot CD )

Da fi - , (D) = I As CD )
,

SO Cds CD) ) seed ]
SEED ]

He S= i

refines fcs ) .

The next lemma shows that @s CD ) )
seed ,

is arefinementof LCD )
,

Lena : hi CD ) = -2 Bs (D)
SEED ]

# 5- i

Sketch of the proof-

We fix variables X , , .
.

. , Xd .

For TE Ed ] set XI II
,

Xi .

One can show that

EE.int#xth-xTdM=E..,B..cssxt-fIIgkEIInIia7ei
of the usual

relation btw . f
und h

.

Setting Xi
-

-
E for AE is d and multiplying by xd we get :

xd ACA . ¥ , ill - IT
" "

= xd . Bt 't Ol ' In

-
= Ewald . ( x - Nd

- " '

=¥o¥Z÷,
AUD ) xd

- i

÷Z¥¥HIM Ix - Nd ÷ofi . a calx . nd
. i

E= ÷.o hi (D) xd
- i hi (D) = I A- Cb)

TE Ed ]

# T  
= i



As an exercise one can show the following

topological
interpretationof the flag h - vector :

= thi - '

fi
- lbs ) trips

\ reduced Euler

( Dm ) Bs (D) = tryst
- h

. TX ( Ds ) ,
characteristic

where Ds = { FED : KLF ) EST for SE [ d ] is
P

coloring map Note : Ds is balanced !

called rank - selected sub complex of D
.

Bi= dimwit; l Dsi Ik )

② Balanced Cohen - Macaulay complexes
-

The next result States that balanced Cohen - Macaulaycomplexesbehave well when taking rank - selections
.

Theorem :
-

Let D be a # - dim '

l balanced CM complex with coloring Kand

let SE Ed ]
.

Then Ds is CM of dimension 1St - l
.

This theorem
, together with I Dm ) and Reisner 's criterion (lecture 2)

imply the following :

Corollary .

Let D be a balanced CM complex .

Then : hi IDI = I Bi - itDd
SEED ]

.

#S=i

The next theorem provides a combinatorial characterization of

flag h - numbers
.

theorem I
"

⇒
"

Stanley ,
1979 j

"
⇐

"

Bjoiner,
Frankl

, Stanley,
1987)

Let D= ( Bs ) seed ] E Z
" "

.

The following are equivalent :

(a) There exists a Cd - D - dim
'
l balanced CM complex such

that BCD ) = B
.



(b) There exists a d- colored simplicial complex A such that

HAS = B .

Remark :

-

¥ The complex thin lb ) is not necessarily pure and it can happen

that dim A- c d - A
,

e. g. , if Bed ,
= O

.

* As a consequence ,
h - vectors of balanced CM complexes are

f- vectors of simplicial complexes and hence satisfy
the Kruskal - Katona Him

.

( those conditions are stronger than

the ones from Macaulay 's them
.

)
.

They satisfy even stronger
conditions ( Frankl - Fu're di - Kalai

,
1988 )

We only sketch the proof of (a) ⇒ (b)
.

It follows

from several propositions .
The main new idea is to use

that the Stanley - Reisner ring of a balanced simplicial
complexD is endowed with a Zd - gradinggiven by

deg (Xj ) = ekcj )
= ( O

, .
. . , O

, ng
, O

, . . .

,
O ) E Zd

.

p

coloring position klj )

Then
,

I
,

is a homogeneous ideal with respect to this

grading and hence induces a Zd - grading on IKEA
.

We need a refinement of the Hilbert series to a Zd- grading .

For variables Xi , .
. . , Xd

,
a = Las

, . .
. ,

a d) E IND and Se Td ] let

Xa
:  = Xan ?

.
. .

. Xaad and X : = Its Xi .



Definition
Let R be a 2 d-

graded Ik - algebra .

Then

HR has .
.

.

, Xd ) = Izz !dim
# Ra ) Xa

is called Zd - graded Hilbert series of R
.

Similar to the description of the usual Hilbert series of a Stanley -

Reisner ring one gets the following result
.

( exercise )

propositi :

Let D be a Ld - N - dim ' l balanced simplicial complex with

coloring k
.

Then
Feed

,
Bsl D) Xs

HIKED ]
( X

is .
.

.

,
A d) =

-

I A - H - -
. LA - X d)

The next proposition guarantees the existence of aparticularnice and simple l
.

s
.

o
. p . for balanced simplicial

complexes .

Proposition 2 :
-

Let D be a la - M - dim ' l balanced simplicial complex on

vertex set In ]
.

Set Oi  = xj for A Ejed .
Then :

coloring si

( i ) on , .
. . , Od is anl

.

s
.

o
. p . for KES ]

.

Cii ) For every
1 Ej En : Xj -

- O in KT 'D Kon . .
. , od ) .

Proto :

Li ) directly follows from the kind - Kleinschmidt criterion
.



( ii ) Let jeEn ] with klj ) -

- i
.

Then

Xj IIe,

×e) = Xj I ¥¥ et Xj ) ; xp E KUD
.

E L Q , .
. . , -0d)

{ lips IED for all
¥ . x f -

- O in IKLDIKQ
, . . . ,

od ) .

e with KID -
- i

.

Das

As for Hilbert series of quotients of Stanley - Reisner rings

by and.

s
. op . for CM complexes,

there is a multi graded
analog in the balanced setting .

Pomposity :

Let D be a Ld - at - dim '
e balanced CM complex with coloring k

.

Let Oy .
. . , Od be the colored e. s

.
o . P .

.

as in Proposition 2. Then

HKEDTK
on . . . , od >

Hit - -
- it d) = s¥d

,

Bs (D) Xs
.

We now sketch the proof of (a) ⇒ (b) of the theorem :

Let Oi , .

. .

,
Ad be the colored l

.

S
. op .

and let a E Zito
.

Set
A a

= { µ
.

.

µ monomial of degree sit
.

meAaQtdat's b : $97!!
dtgreeacomponent

and the a¥%a - ha
.

One shows that h is a multi complex and by Proposition 2

even a simplicial complex .

Moreover
,

A- is d- colored

with the coloring inherited from D
.



Proposition 3 further implies :

as Cri = dimklk-LDThon.ae/es-- Bsl D)
.

T
les )

;
= {

A its Do

o ites

③ The balanced generalized lower bound theorem

In the following we consider simplicial polytopes whose boundary

complexes are balanced ( balanced simplicial polytopes )
.

If P is such a balanced simplicial polytope ,
then we have

seen that it satisfies the GLBT :

hols P) Eh
,
18M E

.
.

.

Eh LE, lap)
.

It is natural to expect that

balanced

ness forces stronger
inequalities for hi , he ltogelher with Goff )

Conditions :

inequalities
it - part of quality

only if - part of equality
-

enErir
-

theorem IJuhnke - Murai
,

2018 i Klee - Novik
,

2016 i Adiprasi to
,

2017 )

Let P be a balanced simplicial polytope of dimension d
.

Then :

hotdr-gehnfa.pe . . . e HEMI .

Ideal

Moreover
, hi-f.ae?Y=hitdP)- for some

iedz
if and only it P has

can

the balanced Ci - A - stacked property .

-

Roughly :P can be decomposed into d-dim
'
l

cross - polytopes without introducing
interior faces of dimension Ed - i

For it we get cross - poly topal stacked spheres .


