Algebraic and combinatorial aspects of face numbers and Stanley-Reisner rings

Lecture 1
(1) Polytopes and basic properties
(2) The upper bound conjecture (UBC)
(3) Proof of the upper bound theorem (UBT) for simple / simplicial polytopes
(1) Polytopes and basic properties We start with some basic definitions:
\rightarrow We work in $\mathbb{R}^{d}=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \in \mathbb{R}\right\}$ endowed with the standard topology and the inner produlet.

Our protagonists for today will be polytopes.
Definition:
A polytope P is the convex hull of finitely many points, i.e.,

Examples

3 -cube

octahedron ($=3$-dim'l cross-) polylope
From the picheres we see that every polytope has faces (vertices, edges,...). Let's make this formal:

Definition:

- A supporting hyperplane of a polytope $P \subseteq \mathbb{R}^{d}$ is an affine hyperplane $H=\left\{x \in \mathbb{R}^{d}:\langle a, x\rangle=b\right\}$ such that all points of P lie on the same side: H.
- A face of P is the intersection, P with any supporting hyperplane. (Note that 4 : a face)
- The dimension of a face F of P is the dimension of its affine hull = "translated linear subspace"
= smallest affine subspace containing F

Examples:
a face of
$\operatorname{dim} O$ ($=$ vertex)
a face $\quad(=$ edge $)$
of dim 2,
ie, coolimension $1(=$ facet $)$

Note: Also \varnothing and P are regarded as (improper) faces. with the convention $\operatorname{dim}(\phi)=-1$.

Useful facts

- Every face of a polytope is a polytope.
- The set of faces ordered by inclusion is a graded lattice.
- The set of faces ordered by reverse inclusion is the face lattice of a polytope P^{*} (the (combinatorial) dual or polar) of P.

If we assume that $O \in \operatorname{lnt}(P)$, then we can define P^{*} via

$$
P^{*}=\left\{y \in \mathbb{R}^{d}:\langle x, y\rangle \leqslant 1 \text { for all } x \in P\right\}
$$

Example:

As an exercise you can verify that for $P=[-1,1]^{d}=\operatorname{conv}\left(\{-1,1\}^{d}\right)$ the d-dimensional cube the dual is given by $P^{*}=\operatorname{conv}\left(\left\{ \pm e_{i}\right\}\right)=$ the d-dimensional crosspolytope. $i-$ th unit vector

$$
\quad(0, \ldots, 0,1,0, \ldots, 0)
$$

position i

Definition
For a polytope P we call $f(P)=\left(f_{0}(P) f_{1}(P), \ldots, \widetilde{\left.f_{\operatorname{dim}(P)}\right)}\right)$ the f-vector of P, where $f_{i}(P)=\# i-\operatorname{dim}^{\prime} l$ faces of P.

Remark:
We defined, without proving that this is indeed true,
P^{*} as the (combinatorial) dual of P. Hence,

$$
f_{i}(P)=f_{\operatorname{dim}(P-1-i}\left(P^{*}\right) \quad \text { for } 0 \leq i \leq \operatorname{dim}(P)-1
$$

Example:
We have $f\left([0,1]^{3}\right)=(8,12,6,1)$ and

$$
f\left(\left([0,1]^{3}\right)^{*}\right)=f(3 \text {-crosspolylope })=(6,12,8,1)
$$

Simplicial and simple polytopes

- A d-dim'l polytope is simplicial if every face is a $\underbrace{\text { slype }}_{\text {simplex. }}$
a polytope whose
face lattice is isomorphic
to the one of $\operatorname{conv}\left(e_{1}, \ldots\right.$, er)
- A d-dim'l polytope is simple if its dual P^{*} is simplidial.

Remark:
As an exercise one can show that a d-dim'l poly lope is simplicial iff one (all) of the following equivalent conditions hold:
(a) every facet of P has d vertices
(b) every proper face of P is a simplex.
(c) every k-face has $k+1$ vertices for $k \leq d-1$.

Similarly, a d-dim'l polytope is simple iff one (all) of the following equivalent conditions holds:
(a) Every vertex of P lies in d facets.
(b) Every vertex of P lies in d edges
(c) Every k-face of P lies in $d-k$ facets for $k \geq 0$.

We will use the following easy
Fact:
If P is simple, then so is every face of P.
(2) The Upper Bound Conjechre

Our protagonists in this part are a family of fascinating polytopes which we now define.

Definition:
(a) The curve $\{\underbrace{\left(t, t^{2}, \ldots, t^{d}\right)}_{=q_{d}(t)}: t \in \mathbb{R}\}$ is called moment curve in \mathbb{R}^{d}.
(b) Given any n distinct real numbers $t_{1}<\ldots<t_{n}$ the polytope $C\left(d_{1} n\right)=\operatorname{conv}\left(q\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)$ is called a cyclic polytope.

Here are some properties of $C(d, n)$ that we will not prove in the lecture but that we will consider in the exercises.

Properties:
(1) $\operatorname{dim} C(d, n)=d$ (since any $d+1$ points on the moment curve are seen to be linearly independent using the Vandermonde determinant) and $C(d, n)$ is simplicial.
(2) $C(d, n)$ is $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly, ie., every collection of $\leq\left\lfloor\frac{a}{2}\right\rfloor$ vertices is a face of $C(d, n)$ in particular,

$$
f_{k-1}\left(C_{d}(n)\right)=\binom{n}{k} \quad \text { for all } k \leq\left\lfloor\frac{d}{2}\right\rfloor
$$

(3) The face lattice of $C(d, n)$ is independent of the chosen points. So, we speak about the cyclic polylope.
(4) Gale evenness condition

A d- tuple $V_{d}=\left\{q\left(t_{i_{1}}\right), \ldots, q\left(t_{i_{d}}\right)\right\}$ determines a facet $F=\operatorname{conv}\left(V_{d}\right)$ of $C_{x}(n)$ iff for every 2 points $q\left(t_{i}\right), q\left(t_{j}\right) \in V V_{d}(i<j)$
$\quad\left|V_{d} \cap\left\{q\left(t_{i}\right), q\left(t_{i+1}\right), \ldots, q\left(t_{j}\right)\right\}\right|$ is even.
We can now formulate the Upper Bound Corjechre; which is che to Motzin (1957).

Let P be a d-dim'l (simplicial) polytope with $f_{0}(P)=n$. Then:

$$
f_{i}(P) \leqslant f_{i}(C(d, n))
$$

for all $1 \leq i \leq d-1$.
The UBC has been shown for:
all polytopes (McMullen, 1970)

- all triangulations of $(d-1)$-dim'l spheres (Stanley, 1975) (We will prove this tomorrow.)
- all triangulations of odd- dim'l closed manifolds as well as all even-dim'l manifolds of Euler characteristic 2 (Noil) 1998)

Today we will prove the UBC for polytopes. Since by two procedures, called pulling and pushing of vertics, any d-polytope can be converted into a simplicial polytope with the same number of vertices and at least as many j-faces $(1 \leq j \leq d-1)$, we can restrict our attention to simplicial polyhopes.
We prove a dual form:

$$
\begin{aligned}
((d, n) \text { simplicial } & \longleftrightarrow C(d, n)^{*} \text { simple } \\
f_{0}(C(d, n))=n & \longleftrightarrow f_{d-1}(C(d, n))^{*}=n
\end{aligned}
$$

Theorem (M cMullen, 1970)
Let P be a d-dim'l simple polytope with n facets. Then: $\quad f_{i}(p) \leq f_{i}\left(\left((d, n)^{*}\right)\right.$ for all $0 \leq i \leq d-1$.
(3) Proof of the UBT

Let $P \subseteq \mathbb{R}^{d}$ be a d-dim'l simple polytope Let $l: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a linear funchonal, that is infective on the vertex set of P.
Orient each edge $\{v, w\}$ in the direction of increasing value of l.

Definition
We set $h_{k}^{l}(P)=$ \# of vertices of indegree k and $h^{l}(P)=\left(h_{0}^{p}, h_{1}^{p}, \ldots, h_{d}^{P}\right)$

Example:
maximize in direction l
 As P is simple each vertex has degree d.

$$
h^{l}(3 \text {-cube })=(1,3,3,1)
$$

Theorem:
Let P be a simple d-polytope and ℓ a linear functional as above. Then:

$$
\sum_{k=0}^{\alpha} f_{k}(P) x^{k}=\sum_{=0}^{\alpha} h_{i}^{l}(P)(x+1)^{i}
$$

In particular, $\quad h_{i}^{l}(P)=\sum_{k=i}^{d}(-1)^{k-i}\binom{p}{i} f_{k}(P)$
and $h^{l}(P)=: h(P)$ does not depend on l
The proof of this theorem uses the following lemma:
Lemma:
Let P be a simple d-polyhope and let $l: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a linear functional as before. Let $v \in \mathcal{P}$ be a vertex that is a local maximum (ie, $\ell(v)>\ell(n)$ for all edges $\{u, v\} \in P)$, then v is a global maximum (i.e., $l(v)>l(u)$ for all vertices $u \in P)$.

We will prove both, the lemma and the theorem, in the exercises.

As a consequence of the theorem we obtain.
Corollary:
Let P be a simple d-polytope. Then:
(a) $h_{i}(p) \geqslant 0$ for all $0 \leq i \leq d$.
(b) $h_{i}(P)=h_{d-i}(\rho)$ for all $0 \leq i \leq d$.
(Dehn-Sommerville equations)
Proof:
(a) is clear from the definition of $h_{i}(P)$.
(b) $h_{i}(P)=h_{i}^{l}(P)=\#$ (vertices of indegree i w.r.t.l)

$$
=\#(\text { vertices of indegree d-i w.r.t. }-l)
$$

$$
=h_{d-i}^{(-\alpha)}(P)=h_{d-i}(P)
$$

Observation:

$$
f_{k}(P)=\sum_{i=k}^{d} \underbrace{\binom{i}{k}}_{\geqslant 0} \underbrace{h_{i}(P)}_{\geqslant 0}
$$

In particular, bounds for the h-numbers imply bounds for the f-numbers. The UBT hen follows from the following stronger result.

Theorem:
If P is a simple d-polyrope with n facets, then (*) $h_{i}(p) \leq h_{i}\left(C(d, n)^{*}\right)$ for all $0 \leq i \leq d$,

Due to the Dehn-Sommerville equations it Suffices to show $(*)$ for $i \geqslant\left\lceil\frac{d}{2}\right\rceil$.
To do so, in the exercises we will compute $h_{i}\left(C(d, n)^{*}\right)$
Lemma

$$
h_{i}\left(C(d, n)^{*}\right)=h_{d-i}\left(C(d, n)^{*}\right)=\binom{n-d+i-1}{i} \text { for all } i \leqslant\left\lfloor\frac{d}{2}\right\rfloor
$$

The previous theorem (and hence the UBT) needs the following two lemmas.

Lemma 1 :
Let P be a simple d-polytope and I a facet of P. Then: $h_{i}(P) \geqslant h_{i-1}(F)$ for all $1 \leq i \leq d-1$.

Lemma 2:
Let P be a simple d-polytope. Then for all $0 \leq i \leq d-1$

$$
\sum_{\substack{\text { Fact } \\ \text { of } P}} h_{i}(F)=(i+1) h_{i+1}(P)+(d-i) h_{i}(P) \text {. }
$$

We leave the proofs of Lemmas 1 and 2 as an evercire and instead show how to use them to show $(*)$.

Proof of $(*)$:
We have seen that it suffices to show (**) $h_{d-i}(P) \leq\binom{ n-d+i-1}{i}$ for all $i \leq\left(\frac{d}{2}\right\rfloor$.
We prove $(* *)$ by induction on i.

$$
\begin{array}{ll}
i=0 & h_{d}(p)=f_{d}(p)=1=\binom{n-d+0-1}{0} \\
i=1: & h_{d-1}(p)=f_{d-1}(p)-d=\binom{n-d+1-1}{1}
\end{array}
$$

Induction step: $i \rightarrow i+1$
We have: \measuredangle Lemma. 1

$$
\begin{aligned}
& n \cdot h_{d-i}(P) \geqslant \sum_{\text {Lemmacat }} \underbrace{h_{d-i-1}(F)}_{\leq h_{d-i}(P)} \\
& \equiv(d-i) h_{d-i}(P)+(i+1) h_{d-i-1}(P) .
\end{aligned}
$$

$$
\begin{aligned}
& \Theta(d-i) h_{d-i}(p)+(i+1) h_{d-i-1}(P) . \\
\Rightarrow & (n-d+i) h_{d-i}(p) \geqslant(i+1) h_{d-i-1}(P) \\
\Rightarrow & h_{d-i-1}(P) \leqslant \frac{n-d+i}{i+1} h_{d-i}(P)
\end{aligned}
$$

$\begin{gathered}\text { induction } \\ \text { hypothesis }\end{gathered} \leqslant \frac{n-d+i}{i+1}\binom{n-d+i-1}{i}=\binom{n-d+i}{i+1}$ 目

Lecture 2
(1) Simplicial complexes and Stantey-Reisher rings
(2) The Upper Bound Theorem for Cohen-Macaulay com plexes (Stanley's proof) and spheres
(1) Simplicial complexes and Stantey-Reisner rings Our protagonists for today will be simplicial spheres and Cohen-Macaulay complexes. In order to define these, we first need to introduce some basic notions.

Definition:

- An (abstract) simplicial complex on vertex see V is a collection of subsets of V that is closed under inclusionie.,

$$
F \in \Delta, G \subseteq F \Rightarrow G \in \Delta
$$

- Elements of \triangle are called faces.
- For a face $F \in \Delta$, $\operatorname{dim} F:=|F|-1$ is the dimension of F and $\operatorname{dim} \Delta:=\max (\operatorname{dim} F: F \in \Delta)$ is the dimension of D.

Examples:
(1) O-dimensional simplicial complexes are disjoint unions of $n_{" p o i n t s " . ~}^{\text {p }}$
(2) 1-dimensional simplicial complexes are just graphs:

ϕ is always a face if $\Delta \neq \varnothing$
1-dim'l faces
= edges
We often omit parantheses and write 123 instead of $\{1,2,3\}$.
(3)

- 6

$$
\begin{aligned}
& \Delta=\{\{_{\text {dim }=-1}, \underbrace{1,2, \ldots, 6,}_{\operatorname{dim}=0} \\
& \underbrace{12,}_{12,13,14,15,23,24,25,56,}, \\
&\underbrace{123,145}_{\text {dim }=2}=\}
\end{aligned}
$$

(4)

More generally, to any boundary of a simplicial polytope (cf. yesterday's lecture) we can associate a simplicial complex.

As for polytopes, for a $(d-1)$-dimensional simplicial complex Δ we define its fvector $f(\Delta)=\left(f_{-1}(\Delta), f_{0}(\Delta), \ldots, f_{d-1}(\Delta)\right)$ via

$$
f_{i}(\Delta)=\# \text { of } i \text { - dim'l faces of } \Delta,-1 \leq i \leq d-1 \text {. }
$$

In part (2), (3) resp. (4) of the previous example, we have

$$
f(\Delta)=(1,7,7), \quad f(\Delta)=(1,6,8,2) \quad \text { resp. } f(\Delta)=(1,6,12,8) .
$$

In the examples, we have already visualized a simplicial complex geometrically. More generally, this works in the following manner:
Given a simplicial complex Δ on vertex set $V=[n]:=\{1,2, \ldots, n\}$ we consider \mathbb{R}^{n} together with its standard basis

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

For $F \in \Delta$ define $\|F\|=\operatorname{conv}\left(e_{i}: i \in F\right)$.
is a $(|F|-1)-\operatorname{dim}^{\prime} l$ simplex
(in the sense from yesterday)
We set $\|\Delta\|:=\bigcup_{F \in \Delta}\|F\|$ and call this the geometric realization of Δ.
Example:

$$
\Delta=\{\phi, 1,2,3,12,13\},\|\Delta\|=
$$

Remarks:
. $\|\Delta\|$ is a topological space with topology induced from \mathbb{R}^{n}.

- The above construction shows that any simplicial complex
on n vertices can be embedded in \mathbb{R}^{n}. In fact, by choosing n distinct points on the $(2 d+1)-d i m$ 'l moment curve any d-dim'l simplicial complex is embeddable (cf.yesterday's lecher) in $\mathbb{R}^{2 d+1}$ (but not $\mathbb{R}^{2 d}$: e.g., K_{5} is only em beddable in $\mathbb{R}^{2 \cdot 1+1}$ but not $\mathbb{R}^{2 \cdot 1}$).

We can finally define our first protagonist for today:
Definition:
A simplicial sphere is a simplicial complex Δ such that $\|\Delta\|$ is homeomorphic to a sphere.

Example / Comments:
Any boundary of a simplicial polytope is a simplicial sphere.
(2) For $d-1 \leq 2$ we have
$\left\{(d-1)-\operatorname{dim}^{\prime} \ell\right.$ simplicial spheres $\}=\{(d-1)-\operatorname{dim}$ 'l polytopal spheres $\}$ realizable as boundry of a simplicial paybope
(For $d-1 \geqslant 3$, most simplicial spheres are not polytopal. ($d-1=3$, Pfeiffle I Ziegler, 2004 ; $d-1 \geqslant 4$, Kalai, 1988)

Today's goal: Prove the UBT for simplicial spheres, ie., $f_{i}(\Delta) \leq f_{i}(C(d, n))$ for any $(d-1)$-dim'l simplicial the d-dim'l cyclic sphere Δ on n vertices.
polyrope on version

For the proof we need to enlarge our toolbox. An extremely useful tool in the study of face numbers is the Stantey-Reisner ring.
Definition:
Let K be a field and \triangle be a simplicial complex on vertex set $[n]$. The Stanley-Reisner ideal I_{Δ} of Δ is

$$
I_{\Delta}=\left\langle x_{F}:=\prod_{i \in F} x_{i}: F \notin \Delta\right\rangle \subseteq S=\underbrace{\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]} .
$$

is a squarefree, monomial ideal polynomial ring in n variables over k
$\mathbb{K}[\Delta]=S /_{I_{\Delta}}$ is called Stanley-Reisner ring or face ring.
Examples
(1) If $\Delta=2^{[d]}$ is a $(d-1)-\operatorname{dim}^{\prime} l$ simplex, then $S=\mathbb{K}\left[x_{1}, \ldots, x_{d}\right], I_{\Delta}=\langle 0\rangle$ and $\mathbb{K}[\Delta]=S$
(2) If $\Delta=\{F \subseteq[d]\}$ is the boundary of $a(d-1)$ $\operatorname{dim}^{\prime}$ ' simplex, then $S=\mathbb{K}\left[x_{1}, \ldots, x_{d}\right], I_{\Delta}=\left\langle x_{1} \ldots x_{d}\right\rangle$ and $\mathbb{K}[\Delta]=S /\left\langle x_{1} \cdots x_{a}\right\rangle$.
(3) If $\Delta=2{ }^{5}=$ boundary of octahedron, then $\left.1 \cdot \begin{array}{l}v \\ \vdots \\ 6\end{array}\right]^{4} \quad S=\mathbb{K}\left[x_{1}, \ldots, x_{6}\right], I_{\Delta}=\begin{gathered}\left\langle x_{1} x_{3}, x_{2} x_{4},\right. \\ \left.x_{5} x_{6}\right\rangle\end{gathered}$
Note: Also $\{1,2,3\}$ is not a face but we automatically have $x_{1} x_{2} x_{3} \in I_{\Delta}$ since $x_{1} x_{3} \in I_{\Delta}$.
As generators for I_{Δ} it suffices to take the ones corriesponding to (inclusionwise) minimal non -faces.

Question: Why do we care for $\mathbb{K}[\Delta J$?
Answer: We will see that many combinatorial and topological invariants of \triangle are encoded in terms of algebraic invariants of $\mathbb{K}[\Delta]$ and vice versa.
To make this more precise we need some notions from commutative algebra.
Definition:
A finitely generated, standard, graded \mathbb{K}-algebra is an algebra $R=\bigoplus_{i \in \mathbb{N}} R_{i}$ such that:

- $R_{0} \cong \mathbb{K}$
- R_{i} is a \mathbb{K}-vector space
graded $\rightarrow R_{i} \cdot R_{j} \subseteq R_{i+j}$
standard R is generated by R_{1} (as an algebra)
finitely $\rightarrow \lim _{\mathbb{K}} R_{1}<\infty$
It is straigth forward to show that in this case dim it $R_{i}<\infty$ for all i and $R_{i} R_{j}=R_{i+j}$.
Example:
$\mid K[D]$ with the grading induced by the usual degree. $\mathbb{K}[\Delta]_{i}=\{f \in \mathbb{K}[\Delta]$ homogeneous of degree $i\}$.
Definition:
For a finitely generated, standard, graded \mathbb{K}-algebra $R=\bigoplus \in \mathbb{N} R_{i}$ we set $H_{R}(i):=\operatorname{dim}_{\mathbb{K}} R_{i}$ i for $i \in \mathbb{N}$ and call this the Hilbert function of R.
$F_{R}(t)=\sum_{i \geqslant 0} H_{R}(i) \cdot t^{i}$ is called Hilbert series of R.

In the exercises, we will show the following:
Theorem:
Let Δ be a $(d-1)$-dim'l simplicial complex.
Then,

$$
F_{\mathbb{K}[\Delta]}(t)=\frac{\sum_{i=0}^{d} f_{i-1}(\Delta) \cdot t^{i}(1-t)^{d-i}}{(1-t)^{d}}
$$

As the numerator is a polynomial in t of degree $s t$, we can write it as $\sum_{i=0}^{d} h_{i}(\Delta) t^{i}$
Definition:
$h(\Delta)=\left(h_{0}(\Delta), \ldots, h_{d}(\Delta)\right)$ is called h-vector of Δ.
It is a good exercise to show the following explicit formulas:

$$
\begin{array}{ll}
h_{i}(\Delta)=\sum_{j=0}^{l}(-1)^{i-j}\binom{d-j}{i-j} f_{j-1}(\Delta), & 0 \leq i \leq d \\
f_{i-1}(\Delta)=\sum_{j=0}^{i}\binom{d-j}{i-j} h_{j}(\Delta)
\end{array}
$$

Examples:
(1) $\quad h(d-\operatorname{simple} x)=(1,0, \ldots, 0)$
(2) $h($ boundary of d-simplex $)=(1, \ldots, 1)$
(3) $h(\underset{\sim}{\wedge})=(1,3,3,1)$
(4) $h(11,0)=(1,3,1,-1)$

Remarks:
(.) If Δ is the boundary of a simplicial polytope P, we recover the h-vector of the dual p^{*} as we defined it yesterday, i.e., $h(\Delta)=h\left(P^{*}\right)$.
yesterday's definition

- While we have $f(\Delta) \geqslant 0$ (componentwise), $h(\Delta)$ might have negative entries. (cf. Example (4)).
- In the exercises you will see a neat way of how to compute the h-vector, known as Stantey'strick.
As the f-numbers are nonnegative combinations of the h-numbers, in order to show bounds for $f(\Delta)$ it suffices to show bounds for $h(\Delta)$. For the UBT for simplicial spheres \triangle, we will hence show $h_{i}(\Delta) \leq h_{i}(C(d, n))$.

Indeed, as the Dehn-Sommerville equations $\left(h_{i}(\Delta)=\right.$ $\left.h_{d-i}(\Delta)\right)$ hold for simplicial spheres and not only boundaries of simplicial polytopes, it suffices to show the following statement:

Upper Bound Theorem:
Let Δ be a $(d-1)$ - dim'l simplicial sphere with $f_{0}(\Delta)=n$.
Then, $\quad h_{i}(\Delta) \leq h_{i}(C(d, n))=\binom{n-d+i-1}{i}$
for $0 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor$.
(2) The UBT for Cohen-Macaulay complexes We will derive the UBT for spheres from the following statement.
Theorem:
 plex over IK of dimension $d-1$ with n vertices. Then:

$$
h_{i}(\Delta) \leq\binom{ n-d+i-1}{i} \text { for } 0 \leq i \leq d
$$

We need to review some commutative algebra. In the following \mathbb{K} will always be an infinite field. An important statement is the following:
Noether Normalization Lemma (NNL):
Let A be a finitely generated, standard graded \mathbb{F}-algebra. Then there exist $y_{1}, \ldots, y_{r} \in A_{1}$ such that
. y_{1}, \ldots, y_{r} are $\underbrace{\text { algebraically independent }}$ over $\mathbb{K} \quad f\left(y_{1}, \ldots, y_{r}\right) \neq 0$ for every polynomial $f \in \mathbb{K}\left[x_{1}, \ldots, x_{r}\right]$.
Intuitively, a big
part of A part of A behaves live a
polynomial ring but there are dependencies between different m; b.

Definition: In the previous setting, r is called Krull dimension of A, denoted $\operatorname{dim} A$.

There are several other ways to define the Krill dimension.
Some are stated in the next theorem.
Theorem:
$\operatorname{dim} A=\max \#$ of algebraically independent elements of A
$=$ the order to which $t=1$ is a pole of $F_{A}(t)$
As an immediate consequence of the second characterzation we obtain $\operatorname{dim} \mathbb{K}[\Delta]=\operatorname{dim} \Delta+1$ if Δ is a simplicial complex.
Definition/Lemma
Elements y_{1}, \ldots, y_{r} as in the NNL are called linear system of parameters (l,S.O.P.). Equivalently, in $\operatorname{dim} A=r$, then $\operatorname{dim}_{\mathbb{K}} A /\left\langle y_{1}, \ldots, y_{r}\right\rangle<\infty$.
Example:

$0 \mathbb{K}[\Delta] /\left(\left\langle x_{1}+x_{2}, x_{2}+x_{3}\right\rangle=\operatorname{span}_{k} 1\left(1, x_{1}\right.\right.$.s. (for $\left.\mathbb{K}[\Delta]=\mathbb{K}\left[x_{1}, x_{2}\right) x_{3}\right] /\left\langle x_{1}, x_{3}\right\rangle$
In the exercises, we will see an easy to check criterion if y_{1}, \ldots, y_{d} is an l.s.o.p. for $\mathbb{K}[\Delta]$. (Kind-Keinschmidt).

Definition: There ex. $\eta_{1}, \ldots, \eta_{s}$ st. every $a \in A$ can

- A is called Cohen-Macaulay (CM) if A is a free module over $\mathbb{K}\left[y_{1}, \ldots, y_{r}\right]$ for some (every) l.s.o.p. y_{1}, \ldots, y_{r} Δ is Cohen-Macaulay over \mathbb{K}, if $\mathbb{K}[\Delta]$ is $C M$.

Example:
(1) $\quad: \quad \bullet \quad \mathbb{K}[\Delta]=\mathbb{K}\left[x_{1}, x_{2}\right] /\left\langle x_{1} x_{2}\right\rangle, \operatorname{dim} \mathbb{K}[\Delta]=1$

- $x_{1}+x_{2}$ is an l.s.o.p since $\mathbb{K}[\Delta] /\left\langle x_{1}+x_{2}\right) \cong \operatorname{span}_{K}\left\{1, x_{1}\right\}$
- $\mathbb{K}[\Delta]$ is free over $\mathbb{K}\left[x_{1}+x_{2}\right]$ since as \mathbb{K}-vector space

$$
x_{1}^{p}=\underbrace{x_{1}}_{=n_{1}}\left(x_{1}+x_{2}\right)^{p-1} \quad \text { and } x_{2}^{p}=\underbrace{1}_{=n_{2}} \cdot\left(x_{1}+x_{2}\right)^{p}-\underbrace{x_{1}}_{=n_{1}}\left(x_{1}+x_{2}\right)^{p-1}
$$

uniquely. We call such an l.s.o.p. regular. In particular, \triangle is CM.
(2) $\Delta=0_{3}^{2}$ show that Δ is not CM. $\left(x_{1}+x_{3}, x_{2}\right)$ is an l.S.O.P. but not regular.

Question: Why are CM algebras important?
As an exercise one can show:
Theorem:
Let A be a finitely generated standard, graded algebra IK-algebra with. l.s.o.p. y_{1}, \ldots, y_{r}. Then:
A is $C M \Leftrightarrow F_{A}(t)=\frac{F_{A\left(1 y_{1} \ldots, y_{r}\right)}(t)}{(1-t)^{r}}$
Note: If A is $C M, F_{A\left(y_{1}, \ldots, y_{r}\right)}(t)$ is independent of y_{1}, \ldots, y_{r}
As a first application to simplicial complexes we get:
Corollary:
If Δ is $C M$ over some \mathbb{K}, then $h_{i}(\Delta) \geqslant 0$ for all i.

Proof: Let $\operatorname{dim} \Delta=d-1$ and y_{11}, \ldots, y_{d} an l. sop. for $\mathbb{K}[\Delta]$
Set $\mathbb{K}(\Delta):=\mathbb{K}[\Delta] /\left(y_{1}, \ldots, y_{d}\right)$ Then

$$
\begin{aligned}
& \underbrace{F_{i=0}^{(11} h_{i}(\Delta) t^{i}}_{\frac{\mathbb{K}_{K}[\Delta]}{}(t)} \quad \frac{\mathbb{F}_{\mathbb{K}(\Delta)(t)}}{(1-t)^{d}}=\frac{\sum_{i \in N}^{d} \operatorname{dim}_{\mathbb{K}} \mathbb{K}(\Delta)_{i} t^{i}}{(1-t)^{d}} \\
& \text { Hence } h_{i}(\Delta)=\operatorname{dim}_{\mathbb{K}} \mathbb{K}(\Delta)_{i} \geq 0
\end{aligned}
$$

Example: $h(0)=(1,1,-1)$. So ρ o is not A1 We can now prove (A)
Proof:
Let y_{1}, \ldots, y_{d} be an l.s.o.p. for $\mathbb{K}[\Delta]$. Choose y_{d+1}, \ldots, y_{n} such that $y_{1}, \ldots, y_{d}, y_{d+1}, \ldots, y_{n}$ is a \mathbb{K}-basis for $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The quotient $\left.\mathbb{K}[\Delta] /\left(y_{1}\right), \ldots, y_{d}\right)$ is then generated as an \mathbb{K}-algebra by y_{d+1}, \ldots, y_{n}
Hence,

$$
\begin{aligned}
h_{i}(\Delta)= & \operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}[\Delta] /\left\langle y_{1}, \cdots, y_{d}\right)\right)_{i} \\
& \left.\leq \mathbb{H} \text { monomials of degree } i \text { in }_{n-d \text { variables }\left(y_{d+1}\right) \cdots, y_{n}}\right) \\
& =\binom{n-d+i-1}{i}
\end{aligned}
$$

Note: If Δ is $C M$ and satisfies the DehnSommerville relations, then we get $h_{i}(\Delta) \leq h_{i}(C(d, n))$ for all i.

The UBT for spheres finally follows from the following characterization of CM complexes.
Theorem (Reisner, 1976)
A $(d-1)$-dim'l simplicial complex is CM over \mathbb{K} if and only if
$\tilde{H}_{i}\left(\mathbb{k}_{\Delta}(F) ; \mathbb{K}\right)=0$ for all $F \in \Delta$ and $-1 \leq i \underbrace{i<d-|F|-1}$ $=\underbrace{}_{\operatorname{dim} k_{\Delta}(F)}$,
where $k_{\Delta}(F)=\{G \in \Delta \mid G \cap F=\phi, G \cup F \in D\}$.
$1 k_{\Delta}(F)$
Example: $J f \tilde{H}_{i}(\underbrace{\left(k_{\Delta}(\phi)\right.}_{\Delta \Delta} ; \mathbb{K})$
$\neq 0$ for $i<\operatorname{dim} \Delta$,
then Δ is not Meg., ?
Corollary:
All simplicial spheres and ball are CM over \mathbb{K}.
As simplicial spheres satisfy the Dehn-Sommerville relations we finally get the UBT for spheres (Stanley,
The UBT for spheres:
Let \triangle be $a(d-1)$-dim'l simplicial sphere with n vertices. Then $\quad h_{i}(\Delta) \leq h_{i}(C(d, n))$ for all i. In particular, $f_{i}(\Delta) \leq f_{i}(((d, n))$ for all i.

Lecture 3
(1) The Kruskal-Kahona Theorem: Which integer sequences are f-vectors of simplicial complexes?
(2) Macaulay's Theorem: Which integer sequences are f-vectors of multicompiexes resp. h-vechors of cohenMacaulay complexes?
(3) The g-theorem and the Generalized Lower Bound Theorem (GLBT): Which integer sequences are h-veclors of simplicial polytopes? What are lower bounds for such h-vectors?
(1) The Krushal-Katona Theorem

Our goal is to decide if an integer vector $f=\left(1, f_{0}, \ldots, f_{d-1}\right) \in \mathbb{Z}^{d+1}$ is the f-vector of a $(d-1)$ dim'l simplicial complex. For this we need the fortlowing lemma.
Lemma:
Given positive integers m and k, there exists a unique expression of m in the following form:

$$
m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{s}}{s}\left[\begin{array}{l}
\text { k-binomial } \\
\text { representa- } \\
\text { ion of } m
\end{array}\right.
$$

with $a_{k}>a_{k-1}>\ldots>a_{s} \geqslant s \geqslant 1$.
The proof is a double induction on m and k. We leave it as an exercise.

Example: $\quad m=21, k=4$

$$
21=\underbrace{\binom{6}{4}}_{=15}+\underbrace{\binom{4}{3}}_{=4}+\underbrace{\binom{2}{2}}_{=1}+\underbrace{\binom{1}{1}}_{=1}
$$

We define

$$
\partial_{k}(m)=\left\{\begin{array}{l}
=4 \\
\binom{a_{k}}{k-1}+\binom{a_{k-1}}{k-2}+\ldots+\binom{a_{s}-1}{s-1} \\
0 \quad \\
\text { if } m \neq 0
\end{array}\right.
$$

Example: $\partial_{4}(21)=\underbrace{\binom{6}{3}}_{=20}+\underbrace{\binom{4}{2}}_{=6}+\underbrace{\binom{2}{1}}_{=2}+\underbrace{\binom{1}{0}}_{=1}=29$
An answer to or question is provided by the next theorem.
Theorem: (Schütenberger, Krushal-Laboria)
late $150 \mathrm{~s} \neq 0$ early '60s
For a veclor $f=\left(1, f_{0}, f_{1}, \ldots, \tilde{f}_{d-1}\right) \in \mathbb{Z}^{d+1}$ the following are equivalent:
(a) f is the f-vector of some $(d-1)$ - dim'l simplicial complex.
(b) $\partial_{k+1}\left(f_{k}\right) \leq f_{k-1}$ for all $k \geqslant 1$.

Example: If a simplicial complex has 21 3-faces it has at least $\underset{\substack{111 \\ f_{2}}}{29}=\partial_{4}(21) \quad 2$-faces, at least $f_{1} \geqslant \partial_{3}(2 g)$ $=\binom{6}{3-1}+\binom{4}{2-1}+\binom{3}{1-1}=22$ edges and at least $f_{0} \geqslant \partial_{2}(22)=\binom{7}{2-1}+\binom{1}{1-1}=8$ vertices. Moreover, $(1,8,22,29,21)$ is the f-veclor of a 3 -dim'l simplevial complex.

The proof of $(b) \Rightarrow(a)$ is by a direct construction. For this we need several definitions.

- For a family \mathcal{F} of k-subsets of $\mathbb{Z}_{\geq 0}$ we set

$$
\partial F=\left\{G \subseteq \mathbb{Z}_{\geq 0}:|G|=k-1, G \subseteq F \text { for some } F \in F\right\}
$$

the shadow of F

- revlex-order on k-subsets of $\mathbb{Z} \geq 0$:

$$
A=\left\{a_{1}<\ldots<a_{k}\right\}<_{\text {revex }}\left\{b_{1}<\ldots<b_{k}\right\}=B \Leftrightarrow
$$

$J_{k}=$ collection of k-subsets of $\mathbb{Z} \geqslant 0$ ordered by reviex

$$
=\left\{b_{0}<\text { reviex } \ll_{\text {reft }} b_{1}<_{\text {reviler }} \ldots<_{\text {revile }}<b_{m}<\text { reviex... }\right\}
$$

Example: $k=3,<=\angle$ reviex (in the following)

$$
\begin{aligned}
& J_{3}=\{012<013<023<123<014<024<124<034 \\
&<134<234<\cdots
\end{aligned}
$$

For the proof of $(b) \Rightarrow(a)$ we need two lemmas, whose proofs we defer to the exercises. (Here, Lemma 1 is needed to prove Lemma)
Lemma 1
Let $b_{m}=\left\{a_{1}<\ldots<a_{k}\right\}$. Then

$$
\text { on } m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{1}}{1} \text {, where }
$$

$$
\binom{a_{i}}{i}:=0 \quad \text { if } i>a_{i}
$$

Example: $\{2,3,4\}$ is the $\binom{4}{3}+\binom{3}{2}+\binom{2}{1}=4+3+2=9 t h$ element of J_{3}.
Lemma 2: $\quad=$ initial segment of J_{k}
If $\bar{F}=\left\{b_{0}<b_{1}<\ldots<b_{m}\right\} \subseteq J_{k}$ consists of the first m elements of J_{k}, then $|\partial J|=\partial_{k}(m)$. Moreover, $\partial \mathcal{F}$ is an initial segment of J_{n-1}.

We can now proceed with the proof of $(b) \Rightarrow(a)$:
Given $\left(1 i, f_{0}, \ldots, f_{d-1}\right) \in \mathbb{Z}_{\geq 0}^{d+1}$ with $\partial_{i+1}\left(f_{i}\right) \leq f_{i-1}$ we construct a simplicial complex $x \Delta$ as follows:
Set $\Delta_{i}=$ first fi-1elements of J_{i} and $\Delta=\bigcup_{i=1}^{d} \Delta_{i} \cup\{\phi\}$.
As $\partial_{i+1}\left(f_{i}\right) \leqslant f_{i-1}$, Lemma 2 implies $\partial \Delta_{i+1} \subseteq \Delta_{i}$ for $i \geqslant 0$.
Hence, Δ is a simplicial complex.
Remark:
Simplicial complexes constructed in the previous proof are called compressed. They belong to the more general class of shifted simplicial complexes. Those have a simple If $i \in F \in \triangle$ and $1 \leq j<i$, combinatorial structure which allows then F\\{i\}ט\{j\} } \in \Delta to study alg + topological properties of those complexes more easily. Operations as algebraic shifting (Kalai, 1983) and combinatorial shifting (Erdös-Ko-Rado)associate a shifted simplicial complex to any simplicial complex combinatorial while preserving certain properties (f-numbers, Button nom bess) Cohen-Macaulaynen,...)
algebraic
We only sketch the main ideas of the proof of $(a) \Rightarrow$ (b). We follow Frankel's proof (1984) via combinatorial shifting.

- If $A=\bigcup_{k \geqslant 0} A_{k}$ for $A_{k} \subseteq J_{k}$, we set

$$
\partial A=\bigcup_{k \geq 0} \partial A_{k}
$$

Lemma
Let A be a collection of subsets of $\{0,1, \ldots, n\}$. For $0<j<n$ and $A \in A$ set should be thought of a shift operate replacing j by 0

$$
S_{j(A)}=\left\{\begin{array}{lc}
(A \backslash\{j\}) \cup\{0\} & \text { if } j \in A, O \notin A_{1}(A \mid\{j, j \cup(b)) \\
\& \in A \\
A & \text { otherwise } .
\end{array}\right.
$$

Let $S_{j}(A)=\left\{S_{j}(A): A \in A\right\}$
Then $\quad \partial S_{j}(A) \subseteq S_{j}(\partial A)$
Note: If A is a simplicial complex, then so is $S_{j}(A)$ by Lemma 1 and $f(A)=f\left(S_{j}(A)\right)$
The very rough idea of the proof of $(a) \Rightarrow(b)$ is the following: Let $\Delta=\bigcup_{i=0}^{\operatorname{dim}(\Delta)} \Delta_{i} u\{\phi\}$ be a simplicial complex on vertex set $[n]$, where $\Delta_{i}=i$-dim'l faces

Apply repeatedly shift operators S_{j} to $\Delta(1 \leq j \leq n)$. Since each step increases the number of faces containing 0 , after finitely many steps, we get a simplicial complex Δ^{*} that is stable under S_{j}, i.e., $S_{j}\left(\Delta^{*}\right)=\Delta^{*}$ for all $\Lambda \leq i \leq n$ and $f\left(\Delta^{*}\right)=f(\Delta)$.

- Snow that

$$
f_{l-1}\left(\Delta^{*}\right)=\left|\Delta_{l-1}^{*}\right| \geqslant\left|\partial \Delta_{l}^{*}\right| \geqslant \partial_{l+1}\left|\Delta_{l}^{*}\right|=\partial_{l+1} f_{l}\left(\Lambda^{*}\right) \text {. }
$$

(2) Macaulay's Theorem: Which integer sequences are fvectors of multicomplexes resp. h-vectors of Cohen-Macaulay complexes?
Definition:

- A multicomplex on x_{1}, \ldots, x_{n} is a collection μ of monomials in x_{1}, \ldots, x_{n} such that:
(i) $\mu \in M$ and $\sigma 1 \mu \Rightarrow b \in M$
(ii) $x_{i} \in \mu$ for all $1 \leq i \leq n$.
- For a multicomplex M we set

$$
F_{i}(\mu)=\mid\{\mu \in \mu: \operatorname{deg}(\mu)=i\}
$$

and call $F(\mu)=\left(F_{0}(\mu), F_{1}(\mu), \ldots\right)$ the F-vedor of M.
Examples:
(1) Any simplicial complex \triangle can be thought of as (squarefree) multicomplex by associating to a face $\left\{i_{1}<\ldots<i_{k}\right\} \in \Delta$ the monomial $x_{i_{1}} \ldots x_{i_{k}}$ In this case: $f_{i}(\Delta)=F_{i+1}(\Delta)$.
(2) $M=\left\{1, x, x^{2}, \ldots\right\}$ is an infinite multicomplex on x_{1} with $F(\mu)=(1,1, \ldots, 1)$.
(3) Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal and $B_{I}=$ set of monomials in $\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ not contained in I
Then B_{I} is a multicomplex. In fact
I is a monomial ideal $\Leftrightarrow B_{I}$ is a multicomplex In this care $F_{i}\left(B_{I}\right)=\operatorname{dim}_{\mathbb{K}}\left(\operatorname{IK}\left[x_{1}, \ldots, x_{n}\right] / I\right)_{i}$
Question: What can we say about F-vectors of multicomplexes?
Before we can give an answer to this question we need one more definition. For

$$
m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{s}}{s} \text { with }
$$

$a_{k}>a_{k-1} \gg a_{s} \geqslant s \geqslant 1$, we define

$$
m^{(k\rangle}=\binom{a_{k+1}}{k+1}+\binom{a_{k-1}+1}{k}+\ldots+\binom{a_{s}+1}{s+1} \quad \text { and } 0^{\langle k\rangle}=0 .
$$

Theorem (Macaulay, 1927) $F=\left(F_{0}, F_{1}, F_{2}, \ldots\right) \in \mathbb{Z}_{\geqslant 0}^{\infty}$ is the F-vector of a multicomplex if and only if $F_{0}=1$ and $0 \leq F_{i+1} \leq F_{i}^{\langle i\rangle} \forall i \geq 1$.

The proof is very similar to the one by Kruskal-Katona. and uses an explicit construction. For $F=\left(F_{0}, F_{1}, \ldots\right)$ one defines $T_{i}(F)=$ first $F_{\text {order }}$ of degomial in in $\underbrace{\text { revlex }}$ and $T(F)=U T_{i}(F)$. order of degree i
One then shows that the following conditions are equivalent:
(i) F is F-vector of a multicomplx
\square $\Leftrightarrow 7 s: a_{s}<b_{s}$ and $a_{t}=b_{t} \forall t>s$.
(ii) T_{F} is a multicomplex
(iii) $F_{0}=1$ and $0 \leq F_{i+1} \leq F_{i}^{\langle i\rangle} \quad \forall i \geqslant 1$

Question: Why are multicomplexes important? We have seen in Example (3) that F-vechors of multicomplexes B_{I} are Hilbert functions of quotients of monomial ideals. More generally, in the exercises we will Show that given any homogeneous ideal $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, there exists a monomial \mathbb{K}-basis B_{I} of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and B_{I} is a multicomplex. It follows from Example (3) that B_{I} is the set of monomials not lying in the monomial ideal J and

$$
\left.\operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}\left[x_{1}, x_{n}\right] / I\right)_{i}=F_{i}\left(B_{I}\right) \equiv \operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}\left[x_{1}\right), x_{n}\right]_{J}\right)_{i}
$$

This together with Macaulay's theorem implies:
Theorem:
Let $F=\left(F_{0}, F_{1}, \ldots\right) \in \mathbb{Z}_{\geqslant 0}^{\infty}$. The following are equivalent:
(a) F is the F-vector of a multicomplex.
(b) $F_{0}=1, \quad 0 \leq F_{i+1} \leqslant F_{i}^{\langle i\rangle} \quad \forall i \geqslant 1$
(c) F is the Hilbert function of some finitely generated, stancard, graded algebra $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / J$.

We have seen in the second lecture that if Δ is $a(d-1)$ dim'l Cohen-Macaulay complex with l.S.o.p. y_{1}, \ldots, y_{d}, then

$$
h_{i}(\Delta)=\operatorname{dim}_{\mathbb{K}}(\mathbb{K}[\Delta] /<
$$

So, the previous theorem implies that $h(\Delta)$ satisfies condition (c) if Δ is Cohen-Macaulay. Indeed, Stanley showed the
following complete characterization of h-vechors of CM complexes.
Theorem (Stanley, 1975)
Let $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right) \in \mathbb{Z}^{d+1}$. The following are equivalent:
(a) h is the h-vector of a shellable complex
(b) h is the h-vector of a You have seen this notion in the exercises.
Cohen-Macaulay complex.
Such h is called
(c) $h_{0}=1$ and $0 \leqslant h_{i+1} \leqslant h_{i}^{(i)}$ for all $i \geqslant 0$.
(3) The g-theorem and the Generalized Lower Bound Theorem Questions: (a) Is there a complete characterization of h-vectors of simplicial poly topes?
(b) What are lower bounds for face numbers of simplicial polytopes?
The answer to (a) is given by the following theorem ing 70 - theoremsity (Stanley; Billera-Lee; 1980, conjectured by McMallen)
Let $\left.h=\left(h_{0}, h_{1}\right) \ldots, h_{d}\right) \in \mathbb{Z}_{\geqslant 0}^{d+1}$. The following are equivalent:
(a) There exists a simplicial d-dim'l polytope P such that $h=h(p)$,
(b) $\cdot h_{i}=h_{d-i} \quad \forall i$ Dehn-Sommerville relations $\therefore C f$. Lecture 1

- $1=h_{0} \leq h_{1} \leq \ldots \leq h_{\left(\frac{a}{2}\right)} \longleftarrow$ Generalized Lower Bound Theorem
- ($\left.\left.h_{0}, h_{1}-h_{0}\right) . . h_{\left(\frac{d}{2}\right)}-h_{\left(\frac{d}{2}\right)-1}\right)$ is an M-sequence.

Note: By the Dehn-Sommerville relations $\left.h_{0}\right) \ldots, h_{\left(\frac{d}{2}\right)}$ determine $f(\Delta)$ for $\Delta=$ boundary of d-dim'l simpl. polytope

Sketch of the proof of the necessity part
Step 1: Assume that the vertices of Phave rational coordinates (This can be achieved by slightly perturbing the vertices.) Let $\left(p_{i 1}, \ldots, p_{i d}\right)$ be the coordinates of vertex i.
Step 2: Set $\theta_{i}=p_{1 i} x_{1}+p_{2 i} x_{2}+\ldots+p_{n i} x_{n}$ for $1 \leq i \leq d$ It follows from the Kind-Heinschmidt criterion we have seen in the exercises that $\theta_{1}, \ldots, \theta_{d}$ is an l.s.o. p. for $\mathbb{R}[\partial P]$ and hence $h_{i}(\partial P)=\operatorname{dim}_{\mathbb{R}} \mathbb{R}[\partial P] /\left(\theta_{1}, \ldots, \theta_{d}\right)$
Step $3:$
Fact (Danilori;1978)
$\mathbb{R}[\partial P] /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle$ is isomorphic to the singular cohomology ring of the toric variety X_{p} corresponding to P.
As x_{p} is known to satisfy the Hard Lefschetz Theorem it follows that for $\omega=x_{1}+\ldots+x_{n}$ the following multiplication maps are infective

$$
x \omega:\left(\mathbb{R}[\partial P] /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle\right)_{i} \rightarrow\left(\mathbb{R}[\partial P] /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle\right)_{i+1}
$$

for $0 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor-1$. In particular,

$$
h_{i}(\partial P) \leq h_{i+1}(\partial P) \quad \text { for } 0 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor-1
$$

Moreover,

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{R}}\left(\mathbb{R}[\partial P] /\left(\theta_{1}, \ldots, \theta_{d}, \omega\right)\right.=h_{i}(\partial P)-h_{i-1}(P P) \\
&
\end{aligned}
$$

which implies that $\left(g_{0}(\partial P), \ldots, g_{\left\lfloor\frac{\alpha}{2}\right.}(\partial P)\right)$ is the Hilbert function of $\mathbb{R}[\partial P] / \mathbb{\theta}$
an M-sequence. an M-seguence.

The sufficiency part of the g-theorem was shown by a direct construction.
Remark:

- The g-theorem has been conjechured to be true for simplicial spheres for a long time. This is known as the g-conjechere. In the last 6 months there appeared 3 preprints announcing proofs in general (Adiprasito, 12/2018), for PL-spheres (Karu,5/2019 and Adiprasito-Steinmeyer, 06/2019)

The answer to question (b) is known as the Generalized Lower Bound Theorem which we now state including the equality case. (Murai-Nevo, 2013 ; conjectured by Mc Mullen/ Walkup
Generalized Lower Bound Theorem
Let P be a d-dim'l simplicial polytope. Then

$$
h_{0}(\partial P) \leq h_{i}(\partial P) \leq \ldots \leq h_{\left(\frac{\alpha}{2}\right]}(\partial P)
$$

Moreover, $h_{i-1}(\partial P)=h_{i}(\partial P)$ for some $0 \leq i \leq\left(\frac{a}{2}\right)$ if and only if P is (i-1) - stacked.
i.e., there ex a triangulation of P without new faces of dimen sion $\leq d-i$

Lecture 4
(1) Basic properties of balanced simplicial complexes
(2) Balanced Cohen-Macaulay complexes
(3) The balanced generalized lower bound theorem
(1) Basic properties of balanced simplicial complexes We start with the definition of our protagonist for today.
Definition: (this def goes back to Stanley; he assumed that Δ is pure) $A(d-1)$-dim' l simplicial complex $x \Delta$ is called balanced if the graph of Δ is d-colorable, i.e., there exists a $\operatorname{map} K: V(\Delta) \rightarrow[d]$ such that $K(i) \neq K(j)$ for all $\left.x_{i}, j\right\} \in \Delta$

Note: Since the graph of a $(d-1)$-simplex is a complete graph on d vertices, we cannot color a $(d-1)$-dim'l simplicial complex with less than d colors.
Examples: \quad face $=$ chains $p_{1} \ldots \ldots<p_{k}$ with $p_{i} \in P$
(1) The order complex $O(P)$ of a graded posit P of rank d is a $(d-1)$-dim'l balanced simplicial complex, where the colo-
 He rank
e.g., baryantric subdivision
(2) Cross-polyhopes $C_{d}^{*}=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}$

A coloring of the boundary complex ∂C_{a}^{*} is given by

$$
K:\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\} \rightarrow[d]: \pm e_{i} \mapsto i
$$

(3) Connected sums of balanced complexes:
$\Delta, T(d-1)$-dim'l balanced simplicial complexes, $F \in \Delta$, $G \in \triangle$ facets with $\varphi: F \rightarrow G$. bijection that is color-presercing balanced The balanced connected sum $\triangle \# T$ is thersimplicial complex obtained by identifying vertices of F on G (and all faces on those version) according to φ and removing the facet $F(=G)$.
e.g., stacked cross-polyhopal spheres = balanced connected sums of ∂C_{d}^{*}

Not: the face numbers are independent of how we stack but there are different combinatorial types
For balanced simplicial complexes it is common to study the following refinement of the f and the h-vector.
Definition:
For a $(d-1)$-dim 'l balanced simplicial complex Δ with coloring K we set $\alpha_{S}(\Delta)=\#\{F \in \triangle: K(F)=S\}$ for $S \subseteq[d]$ = \# of faces colored with S and call $\left(\alpha_{s}(\Delta)\right)_{s \subseteq[d]}$ the flag f-vector of Δ.

Moreover, we set $\beta_{S}(\Delta)=\sum(-1)^{|s| T \mid} \cdot \alpha_{T}(\Delta)$ for $S \subseteq[d]$ and $\left(\beta_{S}(\Delta)\right)_{S \leq[d]}$ is called flag h vector.

Note: $\alpha_{S}(\Delta)=\sum_{T \subseteq S} \beta_{T}(\Delta)$

$$
f_{i-1}(\Delta)=\sum_{\substack{S c[d] \\ \# S=i}} \alpha_{s}(\Delta) \text {, so }\left(\alpha_{s}(\Delta)\right)_{s \leq[d]}
$$ refines $f(\Delta)$.

The next lemma shows that $\left(\beta_{S}(\Delta)\right)_{S \subseteq[d]}$ is a refinemont of $h(\Delta)$.
Lemma:

$$
h_{i}(\Delta)=\sum_{\substack{S \leq[d] \\ \# S=i}} \beta_{S}(\Delta)
$$

Sketch of the proof:
We fix variables $\lambda_{1}, \ldots, \lambda_{d}$. For $T \subseteq[d]$ set $\lambda^{\top}=\prod_{i \in T} \lambda_{i}$. One can show that

$$
\sum_{T \leq[a]} \alpha_{T}(\Delta) \cdot \lambda^{T}(1-\lambda)^{[a] T T}=\sum_{T \leq[d]} \beta_{T}(\Delta) \lambda^{T}
$$ oft the usual relation btw f

Setting $\lambda_{i}=\frac{1}{x}$ for $1 \leq i \leq d$ and multiplying by h h $x^{\text {nd }}$ we get:

$$
\begin{aligned}
& \underbrace{x^{d} \cdot \sum_{T \leq[d]} \alpha_{T}(\Delta) \cdot \frac{1}{x^{T T \mid}} \cdot\left(1-\frac{1}{x}\right)^{d-|T|}}_{\sum_{\in[d]} \alpha_{T}(\Delta) \cdot(x-1)^{d-|T|}}=\underbrace{x^{d} \cdot \sum_{T \leq[d]} \beta_{T}(\Delta) \cdot \frac{1}{x^{T T}}}_{=\sum_{i=0}^{d}\left(\sum_{T \leq d]} \beta_{T}(\Delta)\right) x^{d-i}} \\
& \begin{array}{c}
=\sum_{i=0}^{d}\left(\sum_{T \in[a]}^{\#} \alpha_{T}(\Delta)\right)(x-1)^{\alpha-i}=\sum_{\alpha^{2}=0}^{d} f_{i-1}(\Delta)(x-1)^{\alpha-i} \\
d=i
\end{array} \\
& =\sum_{i=0}^{d^{i}=0} h_{i}(\Delta) x^{d-i} \Rightarrow h_{i}(\Delta)=\sum_{\substack{T \leq[d] \\
\# T=i}} \beta_{T}(\Delta)
\end{aligned}
$$

As an exercise one can show the following topological inter－ pretation of the flagh－vector：

$$
1(-1) \quad \beta_{S}(\Delta)=\left(x\left(\Delta_{S}\right)\right)
$$

where $\Delta_{S}=\left\{F \in \triangle: K_{4}(F) \subseteq S\right\}$ for $S \subseteq[d]$ is called rank－selected subcomplex of \triangle ．
（2）Balanced Cohen－Macaulay complexes
The next result states that balanced Cohen－Macaulay comple－ xes behave well when taking rank－selections．
Theorem：
Let Δ be a $(d-1)$－dim＇ ＇balanced CM complex with coloring K and let $S \subseteq[d]$ ．Then Δs is $C M$ of dimension $|S|-1$ ．

This theorem，together with（国）and Reisner＇s criterion（lecture 2） imply the following：
Corollary：
Let Δ be a balanced CM complex．Then：$\quad h_{i}(\Delta)=\sum_{\substack{s \leq[d] \\ \# S=i}} \tilde{\beta}_{i-1}\left(\Delta_{s}\right)$
The next theorem provides a combinatorial characterization of flag h－numbers．
Theorem：（＂\Rightarrow＂Stanley，1979；＂＂Bjöner，Franks，Stanley 1987） Let $\beta=\left(\beta_{s}\right)_{s \leq[d]} \in \mathbb{Z}^{\left(2^{d}\right)}$ ．The following are equivalent：
（a）There exists a $(d-1)$－dim＇l balanced CM complex such that $\beta(\Delta)=\beta$ ．
(b) There exists a d-colored simplicial complex Λ such that $\alpha(\Lambda)=\beta$.

Remark:
(The complex Λ in (b) is not necessarily pure and it can happen that $\operatorname{dim} \Lambda<d-1$, e.g. if $\beta_{[d]}=0$.

- As a consequence, h-vectors of balanced CM complexes are f-veclors of simplicial complexes and hence satisfy the Kruskal-Katona the. (those conditions are stronger than the ones from Macaulay's the.). They satisfy even stronger conditions (Frankl-Füredi-Kalai, 1988)

We only sketch the proof of $(a) \Rightarrow(b)$. It follows from several propositions. The main new idea is to use that the Stanley-Teisner ring of a balanced simplicial complex Δ is endowed with a \mathbb{Z}^{d} grading given by

$$
\operatorname{deg}\left(x_{j}\right)=e_{k(j)}=\left(0, \ldots, 0, \hat{\mu}_{k}, 0, \ldots, 0\right) \in \mathbb{Z}^{d} .
$$

Then, I_{Δ} is a homogeneous ideal with respect to this grading and hence induces a \mathbb{Z}^{d}-grading on $\mathbb{K}[\Delta]$. We need a refinement of the Hilbert series to a \mathbb{Z}^{d}-grading. For variables $\lambda_{1}, \ldots, \lambda_{d}, a=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ and $S \leq[d]$ let $\lambda^{a}:=\lambda_{1}^{a_{1}} \ldots \lambda_{a}^{a_{d}}$ and $\lambda:=\prod_{i \in s} \lambda_{i}$,

Definition:
Let R be a \mathbb{Z}^{d}-graded $\mid K$-algebra. Then

$$
H_{R}\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\sum_{a \in \mathbb{Z}_{\geqslant 0}^{a}}\left(\operatorname{dim}_{k} R_{a}\right) \lambda^{a}
$$

is called \mathbb{Z}^{d} graded Hilbert series of R.
Similar to the description of the unail Hilbert series of a StanleyReisner ring one gets the following result. (exercise)
Proposition 1:
Let Δ be a $(d-1)$-dim'l balanced simplicial complex with coloring k. Then

$$
\begin{aligned}
& \text { Then } \\
& H_{\mathbb{K}[\Delta]}\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\frac{\sum_{S \subseteq[a]} \beta_{S}(\Delta) \lambda^{S}}{\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{d}\right)}
\end{aligned}
$$

The next proposition guarantees the existence of a particular nice and simple l.S.O.p. for balanced simplicial complexes.
Proposition 2 :
Let Δ be a $(a-1)$ - dim'l balanced simplicial complex on vertex set $[n]$. Set $\theta_{i}=\sum_{i(j)} x_{j}$ for $1 \leq j \leq d$. Then: coloring $\rightarrow k(j)=i$
(i) $\theta_{1}, \ldots, \theta_{d}$ is an l.s.o.p. for $\mathbb{K}[\Delta]$.
(ii) For every $1 \leq j \leq n: x_{j}^{2}=0$ in $\mathbb{K}[\Delta] /\left\langle\theta_{\left.1, \ldots, \theta_{d}\right\rangle}\right.$

Proof:
(i) directly follows from the Kind-Wleinschmidt criterion.
(ii) Let $j \in[n]$ with $K(j)=i$. Then

As for Hilbert series of quotients of Stanley-Reisher rings by an l. S.O.p. for CM complexes, there is a multigraded analog in the balanced setting.
Proposition 3 .
Let \triangle be a $(a-1)$-dim'l balanced CM complex with coloring K.
Let $\theta_{1}, \ldots, \theta_{d}$ be the colored l.s.O.p. as in Proposition 2. Then

$$
H_{\mathbb{K}[\Delta] /\left\langle\theta_{1}, \ldots, \theta_{d}\right\rangle}\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\sum_{S \subseteq[d]} \beta_{S}(\Delta) \lambda^{S}
$$

We now sketch the proof of $(a) \Rightarrow(b)$ of the theorem: Let $\theta_{1}, \ldots, \theta_{d}$ be the colored l. s.o.p and let $a \in \mathbb{Z}_{\geq 0}^{d}$.
Set

$$
\begin{aligned}
& \uparrow \\
& \text { degree a component }
\end{aligned}
$$

and $\Lambda=\bigcup_{a \in \mathbb{Z}_{20}^{d}} \Lambda_{a}$
One shows that 1 is a multicomplex and by Proposition 2 even a simplicial complex. Moreover, Λ is d-colored with the coloring inherited from Δ.

Proposition 3 further implies:

$$
\begin{array}{r}
\alpha_{s}(\Lambda)=\operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}[\Delta] /\left(\theta_{1}, \ldots, \theta_{d}\right)\right) e_{s}=\beta s(\Delta) . \\
\left(e_{s}\right)_{i}= \begin{cases}\Lambda & i \in s \\
0 & i 4 s\end{cases}
\end{array}
$$

(3) The balanced generalized lower bound thooum

In the following we consider simplicial poly topes whose boundary complexes are balanced (balanced simplicial polytopes). If P is such a balanced simplicial polytope, then we have seen that it satisfies the GLBT:

$$
h_{0}(\partial P) \leqslant h_{1}(\partial P) \leq \quad \leq h_{\left\lfloor\frac{d}{2} J\right.}(\partial P)
$$

It is natural to expect that balancedness forces stronger conditions: inequalities for h_{1}, h_{2} (together with Got) Conditions: $\overbrace{\text { inequalities }}^{\substack{\text { it-part of equality } \\ \text { onpyis for iq_ }}}$ only if -part of equality
Theorem: (Juhnk-Hurai, 2018; Klee-Novik,2016; Adiprasifo, 2017) Let P be a balanced simplicial polytope of dimension d. Then:

$$
\frac{h_{0}(\partial P)}{\binom{d}{\partial}} \leqslant \frac{h_{1}(\partial P)}{\binom{d}{1}} \leqslant \cdots \leqslant \frac{h_{\left\lfloor\frac{d}{2}\right\rfloor}(\partial P)}{\binom{d}{\left[\frac{d}{2}\right\rfloor}}
$$

Moreover, \qquad - for some $i \leq \frac{d}{2}$ if and only if P has the balanced (i-1)-stached property.

Roughly: Pean be decomposed into d-dim'l cross-poly topes without introducing interior faces of dimension $\leq d-i$
For $i=1$ we get cross-polytopal stacked spheres.

